K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2023

Xét (O'): \(O'A\perp AB\) tại A và O'A là bán kính.

\(\Rightarrow\)AB là tiếp tuyến của (O') tại A.

\(\Rightarrow\widehat{NAB}\) là góc tạo bởi tiếp tuyến và dây cung chắn cung AN.

Mặt khác \(\widehat{AMN}\) là góc nội tiếp chắn cung AN.

\(\Rightarrow\widehat{AMN}=\widehat{NAB}\left(1\right)\)

Xét (O): \(\widehat{AMC}=\widehat{ABC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\widehat{NAB}=\widehat{ABC}\) nên AN//BC.

28 tháng 5 2019

Mình không vẽ hình được mong bạn thông cảm 

a, Vì tứ giác MANB nội tiếp

=>\(IN.IM=IA.IB=IA^2\)(I là trung điểm của AB)

Vậy IN.IM=IA^2

b,

VÌ AB là tiếp tuyến chắn cung AP của đường tròn O'

=>PAB=AMP

MÀ AMP=ABN (tứ giác AMBN nội tiếp)

=>PAB=ABN

MÀ I là trung điểm của AB

=> I là trung điểm của NP

=> tứ giác ANBP là hình bình hành

Vậy tứ giác ANBP là hình bình hành

c,Vì tứ giác ANBP là hình bình hành

nên \(AN//BP\)

=>NAB=ABP

Lại có NAB=NMB( tứ giác AMBN nội tiếp)

=>ABP=NMB

=> IB là tiếp tuyến của đường tròn ngoại tiếp tam giác MBP

Vậy IB là tiếp tuyến của đường tròn ngoại tiếp tam giác MBP

d,Từ G kẻ GK,GH lần lượt song song với AP,BP(\(K,H\in AB\))

=> \(\hept{\begin{cases}IK=\frac{1}{3}IA\\IH=\frac{1}{3}IB\end{cases}}\)và  KGH=APB

MÀ I,A,B cố định 

=> H,K cố định

Ta có APB=KGH

Mà APB =ANB( tứ giác ANBP là hbh)

=> KGH=ANB 

MÀ AB cố định ,ANB là góc nội tiếp chắn cung AB =

=> ANB không đổi => KGH không đổi 

MÀ K,H cố định

=> G thuộc cung tròn cố định

Vậy khi M di chuyển thì G thuộc cung tròn cố định

24 tháng 3 2021

CẢM ƠN BẠN 

a: góc AEB=góc ADB=90 độ

=>ABDE nội tiếp

b: ABDE nội tiếp

=>góc ABE=góc ADE

=>góc ADE=góc AMN

=>DE//MN

14 tháng 3 2015

bạn giải giúp mình nhé :)))

28 tháng 5 2017
Câu này bạn nào giải được không

1: góc CND=1/2*180=90 độ

Vì góc CNE+góc CKE=180 độ

nên CNEK nội tiếp 

2: Xét ΔMNE và ΔMBC có

góc MNE=góc MBC

góc M chung

=>ΔMNE đồng dạng với ΔMBC

=>MN/MB=ME/MC

=>MN*MC=MB*ME

23 tháng 5 2023

giúp em câu c được không ạ

22 tháng 3 2021

Xét $(O)$ có: $BC$ là dây cung
$I$ là trung điểm $BC$

$⇒OI ⊥BC$ (tính chất)

Xét $(O)$ có: $AM;AN$ là các tiếp tuyến của đường tròn

$⇒AM⊥OM;AN⊥ON;AM=AN$

Xét tứ giác $AMON$ có:

$\widehat{AMO}=\widehat{ANO}=90^o$

$⇒\widehat{AMO}+\widehat{ANO}=180^o$

$⇒$ Tứ giác $AMON$ nội tiếp (tổng 2 góc đối $=180^o$)

$⇒$ 4 điểm $A;M;O;N$ thuộc 1 đường tròn(1)

Lại có: $\widehat{AIO}=\widehat{ANO}=90^o$

$⇒\widehat{AIO}+\widehat{ANO}=180^o$

$⇒$ Tứ giác $AION$ nội tiếp (Tổng 2 góc đối $=180^o$)

hay 4 điểm $A;I;O;N$ thuộc 1 đường tròn (2)

Từ $(1)(2)⇒$ 5 điểm $A;I;O;M;N$ thuộc 1 đường tròn (đpcm)

b, $K$ sẽ là giao điểm của $MN$ và $AC$

5 điểm $A;I;O;M;N$ thuộc 1 đường tròn

$⇒$ Tứ giác $AMIN$ nội tiếp

$⇒\widehat{AIM}=\widehat{ANM}$ (các góc nội tiếp cùng chắn cung $AM$)

Ta có: $AM=AN⇒\triangle AMN$ cân tại $A$

$⇒\widehat{AMN}=\widehat{ANM}$

$⇒\widehat{AIM}=\widehat{AMN}$

hay $\widehat{AIM}=\widehat{AMK}$

Xét $\triangle AIM$ và $\triangle AMK$ có:

$\widehat{AIM}=\widehat{AMK}$

$\widehat{A}$ chung

$⇒\triangle AIM \backsim \triangle AMK(c.g.c)$

$⇒\dfrac{AI}{AM}=\widehat{AM}{AK}$

$ ⇒AK.AI=AM^2(3)$

Xét $(O)$ có: $\widehat{AMB}=\widehat{ACM}$ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung $MB$)

Xét $\triangle AMB$ và $\triangle ACM$ có:

$\widehat{AMB}=\widehat{ACM}$ 

$\widehat{A}$ chung

$⇒\triangle AMB \backsim \triangle ACM(g.g)$

$⇒\dfrac{AM}{AC}=\dfrac{AB}{AM}$

Hay $AB.AC=AM^2(4)$ 

Từ $(3)(4)⇒AK.AI=AB.AC(đpcm)$

undefined

22 tháng 3 2021

GIÚP MÌNH VỚI