K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Lời giải:

Ta có:

$AB.AC=AH.BC=40$ 

$AB^2+AC^2=BC^2=100$

$\Rightarrow (AB+AC)^2=AB^2+AC^2+2AB.AC=180$

$\Rightarrow AB+AC=6\sqrt{5}$

Theo định lý Viet đảo, $AB,AC$ là nghiệm của pt $X^2-6\sqrt{5}X+40=0$

$\Rightarrow AB=4\sqrt{5}; AC=2\sqrt{5}$ (giả sử $AB>AC$)
Dễ thấy $AIHK$ là hình chữ nhật do có 3 góc vuông $\widehat{A}=\widehat{I}=\widehat{K}=90^0$

$\Rightarrow IK=AH=4$

Theo định lý Pitago: $AI^2+AK^2=IK^2=16(1)$

Mặt khác, theo hệ thức lượng trong tam giác vuông:

$AI.AB=AH^2$

$AK.AC=AH^2$

$\Rightarrow AI.AB=AK.AC\Rightarrow \frac{AI}{AK}=\frac{AC}{AB}=\frac{2\sqrt{5}}{4\sqrt{5}}=\frac{1}{2}(2)$

Từ $(1);(2)\Rightarrow AI=\frac{4\sqrt{5}}{5}; AK=\frac{8\sqrt{5}}{5}$ (cm)

Chu vi AIHK:

$P=2(AI+AK)=2(\frac{4\sqrt{5}}{5}+\frac{8\sqrt{5}}{5})=\frac{24\sqrt{5}}{5}$ (cm)

Diện tích AIHK:

$S=AI.AK=\frac{4\sqrt{5}}{5}.\frac{8\sqrt{5}}{5}=6,4$ (cm vuông)

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Hình vẽ:

24 tháng 3 2020

undefined

1 tháng 7 2018

a) Cm. AH = DE 

Ta có: HD vuông góc với BA (gt)
          ED vuông góc với BA ( BA vuông góc với AC; E thuộc AC)
=> HD // EA

Ta lại có: DA vuông góc với AC ( BA vuông góc với AC; D thuộc AB)
              HE vuông góc với AC (gt)
=> DA // HE

Xét tứ giác DHEA, có;
* HD // EA (cmt)
* DA // HE (cmt)
=> DHEA là hình bình hành (định nghĩa)
=> DE = AH (tính chất của đường chéo) (đpcm)

b) Gọi O là giao điểm của 2 đường chéo DE, AH của hình bình hành DHEA.

Xét tam giác HEC vuông tại E, có:
* K là trung điểm của HC (gt)
=> EK = KH = KC (trung tuyến của tam giác vuông bằng 1/2 cạnh huyền)
=> DI = IH = IB ( chứng minh tương tự)

Xét tam giác DIO và tam giác HIO, có:
* DI = IH (cmt)
* IO là cạnh chung
* OD = OH (DHEA là hình bình hành)
=> tam giác DIO = tam giác HIO (c.c.c)
=> góc IHO = góc IDO ( yếu tố tương ứng)
Mà góc IHO = 90 độ (AH là đường cao)
=> góc IDO = 90 độ 
=> ID vuông góc với DE (1)

Xét tam giác HOK và tam giác EOK, có:
* HO = EO (DHEA là hình bình hành)
* OK là cạnh chung
* KH = KE (cmt)
=> tam giác HOK = tam giác EOK (c.c.c)
=> góc OHK = góc OEK ( yếu tố tương ứng)
Mà góc OHK = 90 độ (AH là đường cao)
=> góc OEK = 90 độ 
=> KE vuông góc với DE (2)

Từ (1), (2) => ID // KE (từ vuông góc đến song song) (đpcm).

a: Xét tứ giác ADHE có 

\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE

2 tháng 4 2017

Ưu tiên câu c

17 tháng 5 2020

a) Tứ giác AIHK có góc H=K=I=A=90độ
=> AIHK LÀ HÌNH CHỮ NHẬT ( tỨ GIÁC CÓ 3 GÓC VUÔNG)