Bài 22 : a, Cho A = 4 + 22 + 23 + 24 + ... + 220
Hỏi A có chia hết cho 128 không ?
b, Tính giá trị biểu thức
\(\frac{2^{12}\cdot13+2^{12}\cdot65}{2^{10}\cdot104}+\frac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^{12}.13+2^{12}.65}{2^{10}.104}+\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
\(\Rightarrow\frac{2^{12}.\left(13+65\right)}{2^{10}.104}+\frac{3^{10}.\left(11+5\right)}{3^9.2^4}\)
\(\Rightarrow\frac{2^{12}.78}{2^{10}.104}+\frac{3^{10}.2^4}{3^9.2^4}\)
\(=\frac{2^2.3}{4}+3\)
\(=3+3=6\)
cách làm :
câu B
ta thấy có 2 lần 210 xuất hiện trên 1 phần tử
ta gộp lại như sau :
210 x ( 13 + 65 ) cho dễ
còn câu A
ta không thể tóm gọn nên phải tính như bình thường
Bài 19.4
a: \(=2^2\left(1+2\right)+2^4\left(1+2\right)=3\left(2^2+2^4\right)⋮3\)
Ta có:
\(a+b+c+ab+bc+ca=6\)
\(\Leftrightarrow12-\left(2a+2b+2c+2ab+2bc+2ca\right)=0\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+3-\left(2a+2b+2c+2ab+2bc+2ca\right)=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
\(\Rightarrow a=b=c=1\)
\(\Rightarrow Q=\frac{1^{22}+1^{12}+1^{1994}}{1^{22}+1^{12}+1^{2013}}=\frac{3}{3}=1\)
b)
\(\frac{2^{12}.13+2^{12}.65}{2^{10}.104}+\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
\(=\frac{2^{10}\left(4.13+4.65\right)}{2^{10}.104}+\frac{3^9\left(11.3+5.3\right)}{3^9.16}\)
\(=\frac{312}{104}+\frac{48}{16}=3+3=6\)
a) \(A=4+2^2+2^3+2^4+....+2^{20}\)
\(\Rightarrow2A=2^3+2^3+2^4+.....+2^{21}\)
\(\Rightarrow2A-A=\left(2^3+2^3+2^4+....+2^{21}\right)-\left(2^2+2^3+2^4+...+2^{20}\right)\)
\(\Rightarrow A=2^3+2^{21}-\left(2^2+2^2\right)\)
\(\Rightarrow A=2^{21}\)
\(\text{Vì }2^{21}⋮2^7\Rightarrow A⋮128\)
b) \(\frac{2^{12}.13+2^{12}.65}{2^{10}.104}+\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
\(=\frac{2^{12}\left(13+65\right)}{2^{10}.2^3.13}+\frac{3^{10}\left(11+5\right)}{3^9.2^4}\)
\(=\frac{2^{12}.78}{2^{13}.13}+\frac{3^{10}.16}{3^9.16}=\frac{6}{2}+\frac{3^{10}}{3^9}\)
\(=3+3=6\)