K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2019

2, có 2 th

th1: x+5>0 và 3x-12>0

th2: x+5<0 và 3x-12<0

bn tự giải tiếp nha phần sau dễ

mk biết làm bài 2 rồi nhưng bài 3 mk chưa biết làm, bạn chỉ cầ làm kĩ bài 3 cho mk thôi

8 tháng 12 2021

\(TH_1:x\ge0\Leftrightarrow x^3\ge0\Leftrightarrow VT>0\left(loại\right)\)

\(TH_2:x< 0\)

Với \(x=-1\Leftrightarrow VT=4\cdot9\cdot14\cdot29>0\left(loại\right)\)

Với \(x=-2\Leftrightarrow VT=-3\cdot2\cdot7\cdot23< 0\left(nhận\right)\)

Với \(x=-3\Leftrightarrow VT=-22\left(-17\right)\left(-12\right)\cdot3< 0\left(nhận\right)\)

Với \(x< -4\Leftrightarrow x^3< -64\Leftrightarrow x^3+5< x^3+10< x^3+15< x^3+30< 0\)

Do đó cả 4 thừa số trong tích đều âm nên tích này luôn dương

Vậy \(x\in\left\{-2;-3\right\}\)

27 tháng 12 2021

1: \(=x^2+1\)

3: \(=\left(x-y-z\right)^2\)

19 tháng 12 2021

a: \(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

4 tháng 6 2017

a) x = 4                

b) x = 3     

c) x = 2                

d) x = 1. 

5 tháng 1 2021

1.

Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)

Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)

Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):

\(-x^2+x+1=-x^2+3x\)

\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)

Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\)

Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)

Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)

Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ 

17 tháng 9 2021

\(1,A⋮B\Leftrightarrow x^3-3x^2-ax+3=\left(x-1\right)\cdot a\left(x\right)\)

Thay \(x=1\)

\(\Leftrightarrow1-3-a+3=0\\ \Leftrightarrow a=1\)

\(2,A⋮B\Leftrightarrow3x^3-16x^2+25x+a=\left(x^2-4x+3\right)\cdot b\left(x\right)\\ \Leftrightarrow3x^3-16x^2+25x+a=\left(x-3\right)\left(x-1\right)\cdot b\left(x\right)\)

Thay \(x=1\)

\(\Leftrightarrow3-16+25+a=0\\ \Leftrightarrow a=-12\)

Thay \(x=3\)

\(\Leftrightarrow3\cdot27-16\cdot9+25\cdot3+a=0\\ \Leftrightarrow81-144+75+a=0\\ \Leftrightarrow12+a=0\Leftrightarrow a=-12\)

Vậy \(a=-12\)