giải phương trình nghiệm nguyên
a, 2xy +4y - x = 5
b, 2x + y = xy - 3
giúp mk vs nha. mk tikcho.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)2xy+4y-x=5\)
\(\Leftrightarrow\left(2xy+4y\right)-x=3+2\)
\(\Leftrightarrow2y\left(x+2\right)-x-2=3\)
\(\Leftrightarrow2y\left(x+2\right)-\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(2y-1\right)=3\)
\(\Rightarrow\left(x+2\right);\left(2y-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Xét từng trường hợp :
Vậy
\(2x+y=xy-3\)
\(\Leftrightarrow xy-2x-y=3\)
\(\Leftrightarrow\left(xy-2x\right)-y=-2+5\)
\(\Leftrightarrow x\left(y-2\right)-y+2=5\)
\(\Leftrightarrow x\left(y-2\right)-\left(y-2\right)=5\)
\(\Leftrightarrow\left(y-2\right)\left(x-1\right)=5\)
\(\Rightarrow\left(y-2\right);\left(x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét các trường hợp như câu trên và kết luận
a) Ta có: \(x^2-y^2-2x+2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
b) Ta có: \(2x+2y-x^2-xy\)
\(=2\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(2-x\right)\)
c) Ta có: \(x^2-25+y^2+2xy\)
\(=\left(x+y\right)^2-25\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
d) Ta có: \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
e) Ta có: \(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
f) Ta có: \(x^2-2x-4y^2-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\(2x^2+y^2+2x-2xy+5-4y=0\)
\(\Leftrightarrow\left[y^2-2y\left(x+2\right)+\left(x+2\right)^2\right]+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(y-x-2\right)^2+\left(x-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y-x-2=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
\(S=\left(x+2\right)^2+\left(y-1\right)^2=\left(1+2\right)^2+\left(3-1\right)^2\)
\(=3^2+2^2=13\)
\(x^2-y^2=5\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=5\)
=> x-y và x+y \(\inƯ\left(5\right)=\left\{\pm1,\pm5\right\}\)
Ta có bảng sau:
x-y | -5 | -1 | 1 | 5 |
x+y | -1 | -5 | 5 | 1 |
x | -3 | -3 | 3 | 3 |
y | 2 | -2 | 2 | -2 |
Vậy (x,y)=(-3,2),(-3,-2),(3,2),(3,-2)
xin lỗi nhưng mình ghi nhầm đề:
Tìm nghiệm nguyên của PT; \(x^2-2y^2\text{=}5\)
a) \(2xy-y^2-6x+4y=7\)
\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)
\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)
Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).
b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).
Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).
\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).
suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).
Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương.
\(2xy+2x-y=8\)
\(\Rightarrow2x\left(y+1\right)-\left(y+1\right)=8-1\)
\(\Rightarrow\left(y+1\right)\left(2x-1\right)=7\)
\(\Rightarrow\left(2x-1\right)\left(y+1\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(TH1:\hept{\begin{cases}2x-1=1\\y+1=7\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=6\end{cases}}}\) \(TH2:\hept{\begin{cases}2x-1=-1\\y+1=-7\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-8\end{cases}}}\)
\(TH3:\hept{\begin{cases}2x-1=7\\y+1=1\end{cases}\Rightarrow\hept{\begin{cases}x=4\\y=0\end{cases}}}\) \(TH4:\hept{\begin{cases}2x-1=-7\\y+1=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\=0\end{cases}}}\)
Vậy \(\left(x;y\right)\in\left\{\left(1;6\right);\left(0,-8\right);\left(4;0\right);\left(-4;0\right)\right\}\)
\(a,2xy+4y-x=5\\ \Leftrightarrow2y\left(x+2\right)-\left(x+2\right)=3\\ \Leftrightarrow\left(x+2\right)\left(2y-1\right)=3\\ Vìx,y\in Z\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2=1\\2y-1=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+2=-1\\2y-1=-3\end{matrix}\right.\end{matrix}\right.và\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2=3\\2y-1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x+2=-3\\2y-1=-1\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\end{matrix}\right.và\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\end{matrix}\right.\\ Vậy...........\)
\(b,2x+y=xy-3\\ \Leftrightarrow2x+y-xy+3=0\\ \Leftrightarrow x\left(2-y\right)-\left(2-y\right)+5=0\\ \Leftrightarrow\left(2-y\right)\left(x-1\right)=-5\\ \Leftrightarrow\left(y-2\right)\left(x-1\right)=5\\ Rồibntựxétnhé!!!!\)