Tính giá trị của biểu thức
x^2016 + x^2015+ x^2014+...+x+1 tại x =2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Tại $x=2016$ thì $x-2016=0$
Khi đó:
$A=x^{2016}(x-2016)-x^{2015}(x-2016)+x^{2014}(x-2016)-x^{2013}(x-2016)+.....-x(x-2016)+x-2017$
$=x^{2016}.0-x^{2015}.0+......-x.0+2016-2017=2016-2017=-1$
thay x = -1 , y = -1 , z = -1 vào N ta có
N = 1 + (-1) + 1 + ... + 1 + (-1)
= [1 + (-1)] + [1 + (-1) ] + ... + [1 + (-1)]
= 0 + 0 + ... + 0
= 0
Mình nhầm \(C^1_{2016}a_{2015}\)thành \(C^1_{2016}a^{2015}\)
\(A=1+2+...+2^{2015}+2^{2016}\)
\(2A=2+2^2+...+2^{2016}+2^{2017}\)
\(2A-A=\left(2+2^2+...+2^{2017}\right)-\left(1+2+...+2^{2016}\right)\)
\(A=2^{2017}-1\)
\(B=2^{2016}+2^{2015}+2^{2014}+...+2+1\)
\(\Rightarrow B=1+2+...+2^{2014}+2^{2015}+2^{2016}\)
\(\Rightarrow2B=2+2^2+...+2^{2015}+2^{2016}+2^{2017}\)
\(\Rightarrow2B-B=2^{2017}-1\Rightarrow B=2^{2017}-1\)