K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi H là trung điểm của OA

Xét (O) có

OH là một phần đường kính

BC là dây

OH⊥BC tại H

Do đó: H là trung điểm của BC

Xét tứ giác ABOC có 

H là trung điểm của đường chéo AO

H là trung điểm của đường chéo BC

Do đó: ABOC là hình bình hành

mà OB=OC

nên ABOC là hình thoi

2 tháng 9 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Bán kính OA vuông góc với BC nên MB = MC.

Lại có MO = MA (gt).

Suy ra tứ giác OBAC là hình bình hành vì có các đường chéo cắt nhau tại trung điểm mỗi đường.

Lại có: OA ⊥ BC nên OBAC là hình thoi.

b) Ta có: OA = OB (bán kính)

    OB = BA (tính chất hình thoi).

Nên OA = OB = BA => ΔAOB đều  = >   ∠ A O B   =   60 °

Trong tam giác OBE vuông tại B ta có:

B E   =   O B . t g ∠ A O B   =   O B . t g 60 °   =   R . √ 3

19 tháng 12 2021

a: Xét tứ giác ABOC có

H là trung điểm của OA

H là trung điểm của BC

Do đó: ABOC là hình bình hành

mà OA=OB

nên ABOC là hình thoi

10 tháng 3 2019

a, OA vuông góc với BC tại M

=> M là trung điểm của BC

=> OCAB là hình thoi

b, Tính được BE = R 3

9 tháng 4 2021

a)    Ta có OA⊥BC⇒MB=MC.

Mặt khác: MA=MO nên tứ giác ABOC là hình bình hành.

Hình bình hành này có hai đường chéo vuông góc nên là hình thoi. Vậy tứ giác ABOC là hình thoi

b) Ta có BA=BO (hai cạnh hình thoi)

mà BO=OA (bán kính) nên tam giác ABO là tam giác đều.

Suy ra  góc BOA=60 

Ta có EB là tiếp tuyến ⇒EB⊥OB.

Xét tam giác BOE vuông tại B, có:

BE=BO⋅tg60=R.tg600=R√3.

Created by potrace 1.16, written by Peter Selinger 2001-2019

22 tháng 8 2021

a) Tứ giác OCAB là hình thoi vì có hai đường chéo vuông góc và cắt nhau tại trung điểm mỗi đường.

b) Từ câu a) suy ra tam giác ABO vuông, có góc \widehat{O}=60^\circ.

BE=BO.\dfrac{BE}{BO}=BO.\tan60^\circ=R\sqrt{3}.

AH
Akai Haruma
Giáo viên
30 tháng 12 2020

Lời giải:

Đề bài cần bổ sung OA cắt (O) tại E sao cho E nằm giữa O và A.

Do $AB$ là tiếp tuyến $(O)$ nên $AB\perp OB$ hay tam giác $ABO$ vuông tại $B$. Mà $AB=2BO$ (do $AB=2R; BO=R$). Do đó $\widehat{BOA}=60^0$

Tam giác $BOE$ có $BO=EO=R$ nên là tam giác cân. Mà $\widehat{BOE}=\widehat{BOA}=60^0$ nên $BOE$ là tam giác đều.

$\Rightarrow BO=BE(1)$$OB=OC$ và $OA\perp BC$ nên $OA$ là đường trung trực của $BC$

$E\in OA$ nên $EB=EC(2)$

$OB=OC=R(3)$

Từ $(1);(2);(3)\Rightarrow OC=BO=BE=EC$. Suy ra OBEC là hình thoi.

 

AH
Akai Haruma
Giáo viên
30 tháng 12 2020

Hình vẽ:undefined

Bài 2: 

a: Xét (O) có 

CA là tiếp tuyến có A là tiếp điểm

CB là tiếp tuyến có B là tiếp điểm

Do đó: CA=CB

5 tháng 9 2021

Cả câu b và câu c nữa ạ