K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

28 tháng 2 2021

em tự vẽ hình nha 

xét △AMB và △DMC có:

BM = MC

AM = MD

góc AMB = góc DMC  ( đối đỉnh )

=> △AMB = △DMC 

=> góc ABM = góc DCM và ở vị trí sole trong 

=> AB // CD 

ta có AB vuông góc với AC 

=> CD vuông góc với AC ( đpcm )

 

13 tháng 3 2018

A D B C H M E

a/ Xét 2 tam giác MDC và MAB có MA=MD (gt), MB=MC (gt), góc DMC=góc AMB (đối đỉnh)

=> tam giác MDC = tam giác MAB

=> Góc CBA=góc BCD (Góc tương ứng)

Xét \(\Delta ABC\)\(\widehat{CBA}+\widehat{ACB}=90^0\)(Tính chất Tam giác vuông)

=> \(\widehat{BCD}+\widehat{ACB}=90^0=\widehat{ACD}\) => \(CD\perp AC\)

b/ Xét 2 tam giác vuông CHE và CHA có: CH (chung); HE=HA (gt); Tam giác vuông tại H

=> \(\Delta CHE=\Delta CHA\)=> CA=CE (2 cạnh tương ứng) => \(\Delta CAE\)cân tại C

28 tháng 11 2021

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

13 tháng 1 2019

em đã học đường trung bình chưa

13 tháng 1 2019

chưa chị nhưng em đã biết rồi nên chị mà biết thì chỉ cho e

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

nên ABDC là hình bình hành

b: Xét ΔBAE có

BH vừa là đương cao, vừa là trung tuyến

nên ΔBAE cân tại B

=>BA=BE=CD

c: Để BD vuông góc với BA thì ABDC là hfinh chữ nhật

=>góc BAC=90 độ

6 tháng 2 2016

vẽ hình nha bạn

ghi từng bài thui

22 tháng 11 2017

A B C D E H M

a/ Xét 2 tam giác EMC và tam giác AMB có:

BM=MC (gt)

AM=ME (gt)

Góc AMB=góc EMC (2 góc đối đỉnh)

=> tam giác EMC = tam giác AMB (Cạnh-góc-cạnh)

=> AB=EC (2 cạnh tương ứng)

b/ Xét tam giác ADE có:

AH=HD (gt)

AM=ME (gt)

=> HM là đường trung bình của tam giác ADE => HM//DE => AD vuông góc DE (1)

và DE/2=HM (Tính chất đường trung bình)

Mà DF=FE=DE/2

=> DF=HM=DE/2  (2)

Từ (1) và (2) => Tứ giác HMFD là hình chữ nhật => MF vuông góc DE

c/ MF//DH (cmt)

=> MF//AD