tìm x biết
1 | 3x - 18 | = 45
2 |19 + x + 95| = 190
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) |3x-18| = 45
TH1: 3x - 18 = 45
3x = 63
x = 21
TH2: 3x -18 = -45
3x = -27
x = -9
KL:...
phần còn lại b tự làm nha
Ta có \(\left|3x-18\right|=45\Rightarrow\orbr{\begin{cases}3x-18=-45\\3x-18=45\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=-27\\3x=63\end{cases}\Rightarrow\orbr{\begin{cases}x=-9\\x=21\end{cases}}}\)
Vậy ..........
2,\(\left|19+x+95\right|=190\Rightarrow\left|x+114\right|=190\)
\(\Rightarrow\orbr{\begin{cases}x+114=190\\x+114=-190\end{cases}\Rightarrow\orbr{\begin{cases}x=76\\x=-304\end{cases}}}\)
Vậy......
TK MK NHA
1. x(x + 1) - x2 + 1 = 0
<=> x(x + 1) - (x2 - 1) = 0
<=> x(x + 1) - (x + 1)(x - 1) = 0
<=> (x - x + 1)(x + 1) = 0
<=> x + 1 = 0\
<=> x = -1
2. 4x(x - 2) - 6 + 3x = 0
<=> 4x(x - 2) - (3x - 6) = 0
<=> 4x(x - 2) - 3(x - 2) = 0
<=> (4x - 3)(x - 2) = 0
<=> \(\left[{}\begin{matrix}4x-3=0\\x-2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=2\end{matrix}\right.\)
3. x(x + 2) - 3(x + 2) = 0
<=> (x - 3)(x + 2) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Tìm các số a,b,c biết
1,-3x^3.(2ax^2-bx+c)=-6x^5+9x^4-3x^3
2,(ax+b)(x^2-cx+2)=x^3+x^2-2
Giúp mình với ạ
câu 1:
a) 500-(300)-190+(-210)
= 500-300-190-210
= 200 - 210 -190
=-10 - 190
=-200
b) (-3)3 .5+12.(-6)
= -27.5 -72
=-135 - 72
=-207
c) 15.(-19-4)-19.(15-4)
= 15.(-23) - 19.11
=-345 - 209
=-554
câu 2: tìm x thuộc Z
a) 3x-2=3
=> 3x=3/2
=> x=1/2
b) x chia hết cho 5 và -7<x<11
=> x thuộc {-5;0;5;10}
Câu 1:
a) Ta có: \(500-\left(300\right)-190+\left(-210\right)\)
\(=500-300-190-210\)
\(=\left(500-300\right)-\left(190+210\right)\)
\(=200-400=-200\)
b) Ta có: \(\left(-3\right)^3\cdot5+12\cdot\left(-6\right)\)
\(=\left(-3\right)^3\cdot5-3\cdot4\cdot3\cdot2\)
\(=-5\cdot3^3-3^2\cdot8\)
\(=3^2\cdot\left(-5\cdot3-8\right)\)
\(=9\cdot\left(-15-8\right)=9\cdot\left(-23\right)=-207\)
c) Ta có: \(15\cdot\left(-19-4\right)-19\cdot\left(15-4\right)\)
\(=-15\cdot19-15\cdot4-15\cdot19+19\cdot4\)
\(=-30\cdot19+4\cdot4\)
\(=-2\cdot\left(15\cdot19+2\cdot4\right)\)
\(=-2\cdot\left(285+8\right)=-586\)
1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)
\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)
\(\Leftrightarrow x=2\)
3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)
\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)
\(\Leftrightarrow6x=6\)
hay x=1
1)
\(4x^2-4x+1-4x^2-16x-16=9\)
\(-20x-15=9\)
-20x=24
x=-1,2
3)
(2x+1)2=52
2x+1=5
2x=4
x=2
\(1,\Rightarrow4x^2-4x+1-4x^2-16x-16=9\\ \Rightarrow-20x=23\Rightarrow x=-\dfrac{23}{20}\\ 2,\Rightarrow9x^2-6x+1+2x+6+11-11x^2=15\\ \Rightarrow2x^2+4x-3=0\\ \Rightarrow2\left(x^2+2x+1\right)-5=0\\ \Rightarrow2\left(x+1\right)^2-5=0\\ \Rightarrow\left[\sqrt{2}\left(x+1\right)-\sqrt{5}\right]\left[\sqrt{2}\left(x+1\right)+\sqrt{5}\right]=0\\ \Rightarrow\left[{}\begin{matrix}\sqrt{2}\left(x+1\right)=\sqrt{5}\\\sqrt{2}\left(x+1\right)=-\sqrt{5}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x+1=\sqrt{\dfrac{5}{2}}=\dfrac{\sqrt{10}}{2}\\x+1=-\sqrt{\dfrac{5}{2}}=\dfrac{-\sqrt{10}}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-2}{2}\\x=\dfrac{-\sqrt{10}-2}{2}\end{matrix}\right.\)
\(3,\Rightarrow\left(2x+1\right)^2-25=0\Rightarrow\left(2x+1-5\right)\left(2x+1+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
\(4,\Rightarrow x^3+3x^2+3x+1-x^3-2x^2-2x+1-x^2=15\\ \Rightarrow x+2=15\Rightarrow x=13\)