cho x1, x2 là nghiệm của \(x^2-27x+11=0\) chứng minh \(x^n_1+x_2^n\)không chia hết cho 715
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\text{Δ}=\left(m-1\right)^2-4\cdot1\cdot\left(-m\right)=\left(m+1\right)^2>=0\)
=>(5) luôn có nghiệm
b: \(x_1^2+x_2^2-2x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(m-1\right)^2-4\cdot\left(-m\right)-\left(-m\right)^2=2m+1\)
=>\(m^2-2m+1+4m-m^2=2m+1\)
=>2m+1=2m+1(luôn đúng)
Xét (delta)=(2m+1)^2-2m
=4m^2+4m+1-2m
=4m^2+2m+1(luôn lớn hôn hoặc bằng 0)
Suy ra phương trình đã cho luôn có nghiệm
Theo hệ thức Vi-ét có x1+x2=2(2m+1)
x1.x2=2m
Theo bài ra có x1^2+x2^2=(2căn3)^2
(x1^2+x2^2)^2-2x1.x2=12
4(2m+1)^2-4m=12
16m^2+12m+4=12
16m^2+12m-8=0
Suy ra m=\(\frac{-3+\sqrt{41}}{8}\)hoặc m=\(\frac{-3-\sqrt{41}}{8}\)
\(mx^2+2\left(m-1\right)x+\left(m-3\right)=0\left(1\right)\)
\(+TH_1:a=0\Leftrightarrow m=0\)
Thế \(m=0\) vào \(\left(1\right)\) \(\Rightarrow2.\left(-1\right)x-3=0\Rightarrow-2x-3=0\Rightarrow x=-\dfrac{3}{2}\left(ktm\right)\)
\(+TH_1:a\ne0\Leftrightarrow m\ne0\)
Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-2m+2}{m}\\x_1x_2=\dfrac{c}{a}=\dfrac{m-3}{m}\end{matrix}\right.\)
\(x_1< 1< x_1\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x_1-1\right)\left(x_2-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[2\left(m-1\right)\right]^2-4m\left(m-3\right)>0\\x_1x_2-x_1-x_2+1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(m^2-2m+1\right)-4m^2+12m>0\\x_1x_2-\left(x_1+x_2\right)+1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+8m+4-4m^2+12m>0\\\dfrac{m-3}{m}-\left(\dfrac{-2m+2}{m}\right)+1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}20m+4>0\\\dfrac{m-3}{m}+\dfrac{2m-2}{m}+1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{5}\\m-3+2m-2+m< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{5}\\4m-5< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{5}\\m< \dfrac{5}{4}\end{matrix}\right.\)
\(KL:m\in\left(-\dfrac{1}{5};\dfrac{5}{4}\right)\)
Với x-1 ta có:
\(f\left(x\right)=a+b+c=0\)
Vậy x 1 nghiệm của đa thức f(x)