tìm tập xác định của hàm số sau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là B
• Hàm số y = sin x ; y = cos x có tập xác định D = ℝ .
• Hàm số y = tan x & y = cot x có tập xác định lần lượt D = ℝ \ π 2 + k π ; D = ℝ \ k π .
Hàm số xác định khi \(sin\left(\dfrac{x}{2}-\dfrac{\pi}{3}\right)\ne0\)
\(\Leftrightarrow\dfrac{x}{2}-\dfrac{\pi}{3}\ne k\pi\)
\(\Leftrightarrow\dfrac{x}{2}\ne\dfrac{\pi}{3}+k\pi\)
\(\Leftrightarrow x\ne\dfrac{2\pi}{3}+k2\pi\left(k\in Z\right)\)
a) Hàm số xác định khi x 2 − 4x + 3 ≠ 0 hay x ≠ 1; x ≠ 3.
Vậy tập xác định của hàm số đã cho là R \ {1;3}.
b) Hàm số xác định khi x 3 – 8 > 0 hay x > 2. Vậy tập xác định là (2; + ∞ ).
c) Hàm số xác định khi x 3 – 3 x 2 + 2x > 0 hay x(x – 1)(x – 2) > 0
Vì -1 ≤ sinx ≤ 1 nên 3 - sinx > 0 với mọi x nên tập xác định của hàm số là D = R.
b) y = (1 - cosx)/sinx xác định khi và chỉ khi sinx ≠ 0
⇔ x ≠ kπ, k ∈ Z.
Vậy tập xác định D = R\{kπ|k ∈ Z}
c) Vì 1 - sinx ≥ 0 và 1 + cosx ≥ 0 nên hàm số xác định khi và chỉ khi
cosx ≠ -1 ⇔ x ≠ π + k2π, k ∈ Z.
Vậy tập xác định D = R\{π + k2π|k ∈ Z}
a) Vì -1 ≤ sinx ≤ 1 nên 3 - sinx > 0 với mọi x nên tập xác định của hàm số là D = R.
b) y = (1 - cosx)/sinx xác định khi và chỉ khi sinx ≠ 0
⇔ x ≠ kπ, k ∈ Z.
Vậy tập xác định D = R\{kπ|k ∈ Z}
c) Vì 1 - sinx ≥ 0 và 1 + cosx ≥ 0 nên hàm số xác định khi và chỉ khi
cosx ≠ -1 ⇔ x ≠ π + k2π, k ∈ Z.
Vậy tập xác định D = R\{π + k2π|k ∈ Z}
Hàm số xác định khi \(cosx\ne0\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\).