K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2015

Gọi thương của phép chia đa thức \(f\left(x\right)\)cho \(x-1\)và cho \(x+2\), theo thứ tự là \(A\left(x\right),B\left(x\right)\)và dư theo thứ tự là  \(4\) và  \(1\)

Ta có:

\(f\left(x\right)=\left(x-1\right).A\left(x\right)+4\)

nên \(\left(x+2\right)f\left(x\right)=\left(x-1\right)\left(x+2\right).A\left(x\right)+4\left(x+2\right)\) \(\left(1\right)\)

\(f\left(x\right)=\left(x+2\right).B\left(x\right)+1\) 

nên \(\left(x-1\right)f\left(x\right)=\left(x+2\right)\left(x-1\right).B\left(x\right)+1\left(x-1\right)\) \(\left(2\right)\)

Lấy \(\left(1\right)\)trừ \(\left(2\right)\) vế theo vế, ta có:

\(\left[\left(x+2\right)-\left(x-1\right)\right]f\left(x\right)=\left(x-1\right)\left(x+2\right)\left[A\left(x\right)-B\left(x\right)+4\left(x+2\right)-1\left(x-1\right)\right]\)

\(\Leftrightarrow3f\left(x\right)=\left(x-1\right)\left(x+2\right)\left[A\left(x\right)-B\left(x\right)\right]+3x+9\)

Do đó: \(f\left(x\right)=\left(x-1\right)\left(x+2\right)\frac{A\left(x\right)-B\left(x\right)}{3}+\left(x+3\right)\)

\(\Leftrightarrow f\left(x\right)=5x^2\left(x-1\right)\left(x+2\right)+\left(x+3\right)\)

 

trong đó, bậc của \(x+3\) nhỏ hơn bậc của \(\left(x-1\right)\left(x+2\right)\)

Vậy, dư của phép chia \(f\left(x\right)\) cho \(\left(x-1\right)\left(x+2\right)\)là  \(x+3\)

 

24 tháng 11 2022

Gọi thương của phép chia đa thức f(x)f(x)cho x−1x−1và cho x+2x+2, theo thứ tự là A(x),B(x)A(x),B(x)và dư theo thứ tự là  44 và  11

Ta có:

f(x)=(x−1).A(x)+4f(x)=(x−1).A(x)+4

nên (x+2)f(x)=(x−1)(x+2).A(x)+4(x+2)(x+2)f(x)=(x−1)(x+2).A(x)+4(x+2) (1)(1)

f(x)=(x+2).B(x)+1f(x)=(x+2).B(x)+1 

nên (x−1)f(x)=(x+2)(x−1).B(x)+1(x−1)(x−1)f(x)=(x+2)(x−1).B(x)+1(x−1) (2)(2)

Lấy (1)(1)trừ (2)(2) vế theo vế, ta có:

[(x+2)−(x−1)]f(x)=(x−1)(x+2)[A(x)−B(x)+4(x+2)−1(x−1)][(x+2)−(x−1)]f(x)=(x−1)(x+2)[A(x)−B(x)+4(x+2)−1(x−1)]

⇔3f(x)=(x−1)(x+2)[A(x)−B(x)]+3x+9⇔3f(x)=(x−1)(x+2)[A(x)−B(x)]+3x+9

Do đó: f(x)=(x−1)(x+2)A(x)−B(x)3+(x+3)f(x)=(x−1)(x+2)A(x)−B(x)3+(x+3)

⇔f(x)=5x2(x−1)(x+2)+(x+3)

22 tháng 4 2022

-Áp dụng định lí Bezout:

\(f\left(-1\right)=4;f\left(-2\right)=1\)

-Vì đa thức f(x) chia cho (x+1)(x+2) thì thương là 5x2 và đa thức (x+1)(x+2) có bậc 2:

\(\Rightarrow f\left(x\right)=5x^2\left(x+1\right)\left(x+2\right)+ax+b\)

*\(f\left(-1\right)=5x^2\left(-1+1\right)\left(-1+2\right)+a.\left(-1\right)+b=b-a\)

\(\Rightarrow b-a=4\left(1\right)\)

\(f\left(-2\right)=5x^2\left(-2+1\right)\left(-2+2\right)+a.\left(-2\right)+b=b-2a\)

\(\Rightarrow b-2a=1\left(2\right)\)

-Từ (1) và (2) suy ra: \(a=3;b=7\)

-Vậy \(f\left(x\right)=5x^2\left(x+1\right)\left(x+2\right)+ax+b=5x^2\left(x^2+3x+2\right)+3x+7=5x^4+15x^3+10x^2+3x+7\)

 

 

 

 

20 tháng 11 2021

Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)

\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)

Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)

Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)

22 tháng 10 2021

Bài 1:

\(2x^4+ax^2+bx+c⋮x-2\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-2\right)\cdot a\left(x\right)\)

Thay \(x=2\Leftrightarrow32+4a+2b+c=0\Leftrightarrow4a+2b+c=-32\left(1\right)\)

\(2x^4+ax^2+bx+c:\left(x^2-1\right)R2x\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\cdot b\left(x\right)+2x\)

Thay \(x=1\Leftrightarrow2+a+b+c=2\Leftrightarrow a+b+c=0\left(2\right)\)

Thay \(x=-1\Leftrightarrow2+a-b+c=-2\Leftrightarrow a-b+c=-4\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=-32\\a+b+c=0\\a-b+c=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{34}{3}\\b=2\\c=\dfrac{28}{3}\end{matrix}\right.\)

 

22 tháng 10 2021

Bài 2:

Do \(f\left(x\right):x^2+x-12\) được thương bậc 2 nên dư bậc 1

Gọi đa thức dư là \(ax+b\)

Vì \(f\left(x\right):x^2+x-12\) được thương là \(x^2+3\) và còn dư nên

\(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)+ax+b\\ \Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x-3\right)\left(x^2+3\right)+ax+b\)

Thay \(x=3\Leftrightarrow f\left(3\right)=3a+b\)

Mà \(f\left(x\right):\left(x-3\right)R2\Leftrightarrow f\left(3\right)=2\Leftrightarrow3a+b=2\left(1\right)\)

Thay \(x=-4\Leftrightarrow f\left(-4\right)=-4a+b\)

Mà \(f\left(x\right):\left(x+4\right)R9\Leftrightarrow f\left(-4\right)=9\Leftrightarrow-4a+b=-9\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}3a+b=2\\-4a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)

Do đó \(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)-x+5\)

\(\Leftrightarrow f\left(x\right)=x^4+3x^2+x^3+3x-12x^2-36-x+5\\ \Leftrightarrow f\left(x\right)=x^4+x^3-9x^2+2x-31\)