Tìm hai số tự nhiên a và b biết BCNN(a,b)=210 và a.b=2940
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a.b = BCNN(a,b) . ƯCLN(a,b)
=> 2940 = 210 . ƯCLN(a,b)
=> ƯCLN(a,b) = 2940 : 210 = 14
=> a = 14k , b = 14l ( k,l nguyên tố cùng nhau )
Có : a . b = 2940 => 14k . 14l = 2940
196 . k.l = 2940
=> k.l = 15 => k,l \(\in\)Ư( 15)
Vì a,b là stn => k,l là stn => k,l \(\in\){ 1 ; 3 ; 5 ; 15}
Ta có bảng : ( không rõ là a>b hay b>a )
k | 1 | 15 | 3 | 5 |
l | 15 | 1 | 5 | 3 |
a=14k | 14 | 210 | 42 | 70 |
b=14l | 210 | 14 | 70 | 42 |
KL:...
Ta có: BCNN (a,b) . ƯCLN (a,b) = a . b
Mà a . b = 2940 & BCNN (a,b) = 210
=> 210 . ƯCLN (a,b) = 2940
=> ƯCLN (a,b) = 2940 : 210
=> ƯCLN (a,b) = 14
Ta có: a = 14m ; b = 14n (m,n∈Z;m,n≠0)(m,n∈Z;m,n≠0)
=> a . b = 14m . 14n = 2940
=> 14m . 14n = 2940
=> 196 . mn = 2940
=> mn = 2940 : 196 = 15
=> Ta có các trường hợp:
m = 1; b = 15 => {a=14⋅1=14b=14⋅15=210{a=14⋅1=14b=14⋅15=210m = -1 ; b = -15 =>{a=14⋅(−1)=−14b=14⋅(−15)=−210{a=14⋅(−1)=−14b=14⋅(−15)=−210m = 15; b = 1 =>{a=14⋅15=210b=14⋅1=14{a=14⋅15=210b=14⋅1=14m = -15 ; b = -1 => {a=14⋅(−15)=−210b=14⋅(−1)=−14{a=14⋅(−15)=−210b=14⋅(−1)=−14m = 3 ; b = 5 => {a=14⋅3=42b=14⋅5=70{a=14⋅3=42b=14⋅5=70m = -3 ; b = -5 => {a=14⋅(−3)=−42b=14⋅(−5)=−70{a=14⋅(−3)=−42b=14⋅(−5)=−70m = 5 ; b = 3 => {a=14⋅5=70b=14⋅3=42{a=14⋅5=70b=14⋅3=42m = -5 ; b = -3 => {a=14⋅(−5)=−70b=14⋅(−3)=−42
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
Với công thức ab = ƯCLN﴾a; b﴿.BCNN﴾a; b﴿
nên suy ra ƯCLN﴾a; b﴿ = 2940 : 210 = 14
Vậy a = 14m ; b = 14 n ﴾m ≥ n﴿
Thay vào a.b = 2940 được:
14m.14n = 2940
=> m.n = 2940 : ﴾14.14﴿ = 15
Vì m ≥ n nên 15 = 5.3 = 15.1
‐Với m = 5 ; n = 3 thì a = 70 ; b = 42
‐Với m = 15 ; n = 1 thì a = 210 ; b =1
UCLN của 2 số là:2940:210=14
Ta có:a=14.m
b=14.n
Ta có:a .b=2940
hay 14.m.14.n=2940
196(m.n)=2940
m.n=2940:196
m.n=15
m 1 3
n 15 5
=>a 14 42
b 210 70
Vậy ta có các cặp số (a;b)hoặc(b;a)={(14:210);(42;70)}
Tick nha bạn!
Công thức: ƯCLN (a; b) = a.b : BCNN (a; b)
Bg
Ta có: BCNN (a; b) = 210 và a.b = 2940
=> ƯCLN (a; b) = 2940 : 210
=> ƯCLN (a; b) = 14
Đặt a = 14.x và b = 14.y (x, y \(\inℕ^∗\), x và y nguyên tố cùng nhau), ta có:
a.b = 14.x.14.y = 2940
=> 14.14.x.y = 2940
=> 196.x.y = 2940
=> x.y = 2940 : 196
=> x.y = 15 = 3.5 = 5.3 = 1.15 = 15.1
Với x = 3 và y = 5:
=> a = 14.3 = 42 và b = 14.5 = 70 (thoả mãn)
Với x = 5 và y = 3:
=> a = 14.5 = 70 và b = 14.3 = 42 (thoả mãn)
Với x = 1 và y = 15:
=> a = 14.1 = 14 và b = 14.15 = 210 (thoả mãn)
Với x = 15 và y = 1:
=> a = 14.15 = 210 và b = 14.1 = 14 (thoả mãn)
Vậy các cặp {x; y} thoả mãn đề bài là: {42; 70}; {70; 42}; {14; 210}; {210; 14}