Cho đường tròn (O) và đường tròn (O') tiếp xúc ngoài với nhau tai A. Trên đường tròn (O) lấy điểm B sao cho ba điểm A, O, B không thẳng hàng. Đường thẳng AB cắt đưởng tròn (O') tại điểm thứ hai là C (C khác A). Chứng minh OB song song với O'C.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác AO’C nội tiếp trong đường tròn (O) có O’C là đường kính nên
Suy ra: CA ⊥ O’A tại điểm A
Vậy CA là tiếp tuyến của đường tròn (O’)
Tam giác BO’C nội tiếp trong đường tròn (O) có O’C là đường kính nên
Suy ra: CB ⊥ O’B tại điểm B
Vậy CB là tiếp tuyến của đường tròn (O’)
Xét (\(\dfrac{MO}{2}\)) có
ΔOAM nội tiếp đường tròn
OM là đường kính
Do đó: ΔOAM vuông tại A
hay MA là tiếp tuyến có A là tiếp điểm của (O)
Xét \(\left(\dfrac{OM}{2}\right)\) có
ΔOBM nội tiếp đường tròn
OM là đường kính
Do đó: ΔOBM vuông tại B
hay MB là tiếp tuyến có B là tiếp điểm của (O)
a, Ta chứng minh E là trung điểm của AC nên OE = 1 2 BC
Tương tự ta có OF = 1 2 DB
Mà BC < BD ta suy ra OE < OF
b, Chứng minh được A E 2 = A O 2 - O E 2 và A F 2 = A O 2 - O F 2
Từ đó ta có A E 2 > A F 2 => AE > AF
=> sđ A E ⏜ ; A F ⏜
Kiến thức áp dụng
Trong một đường tròn:
+ Số đo của góc nội tiếp bằng một nửa số đo của cung bị chắn.
+ Số đo của góc tạo bởi tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn.