K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

\(\frac{\left(x+1\right)3}{111\cdot3}=\frac{3x+3}{333}\)

\(\frac{\left(y+2\right)2}{222\cdot2}=\frac{2y+4}{444}\)

Ta có: \(\frac{3x+3}{333}=\frac{2y+4}{444}=\frac{z+3}{333}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{3x+3}{333}=\frac{2y+4}{444}=\frac{z+3}{333}=\frac{3x+3+2y+4+z+3}{333+444+333}=\frac{\left(3x+2y+z\right)+\left(3+4+3\right)}{1110}=\frac{989+10}{1110}=\frac{999}{1110}=\frac{9}{10}\)

\(\frac{3x+3}{333}=\frac{9}{10}\Rightarrow3x+3=\frac{2997}{10}\Rightarrow3x=\frac{2967}{10}\Rightarrow x=\frac{989}{10}=98,9\)

Tìm y và z tương tự nhé! Ko hiểu chỗ nào thì nói tớ!

10 tháng 7 2016

thanks:)

15 tháng 8 2017

\(\dfrac{x+1}{111}=\dfrac{y+2}{222}=\dfrac{z+4}{333}\\ \Leftrightarrow\dfrac{3\left(x+1\right)}{3\cdot111}=\dfrac{2\left(y+2\right)}{2\cdot222}=\dfrac{z+4}{333}\\ \Leftrightarrow\dfrac{3x+3}{333}=\dfrac{2y+4}{444}=\dfrac{z+4}{333}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x+3}{333}=\dfrac{2y+4}{444}=\dfrac{z+4}{333}=\dfrac{3x+3+2y+4+z+4}{333+444+333}=\dfrac{3x+2y+z+11}{1110}=\dfrac{999+11}{1110}=\dfrac{1110}{1110}=1\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{3x+3}{333}=1\Rightarrow3x+3=333\Rightarrow3x=330\Rightarrow x=110\\\dfrac{2y+4}{444}=1\Rightarrow2y+4=444\Rightarrow2y=440\Rightarrow y=220\\\dfrac{z+4}{333}=1\Rightarrow z+4=333\Rightarrow z=329\end{matrix}\right.\)

Vậy ...

15 tháng 8 2017

thank you!Nhưng bn giúp mk giải bài 2 nhé!ok

13 tháng 7 2017

a, Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c 

b, Áp dung TCDTSBN ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y = z

Vậy \(\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c, ac = b2 => \(\frac{a}{b}=\frac{b}{c}\left(1\right)\)

ab = c2 => \(\frac{b}{c}=\frac{c}{a}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c

Vậy \(\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

13 tháng 7 2017

a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Vậy a = b ; a = c ; c = a => a=b=c

b, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y; y = z; z = x => x = y = z

\(\Rightarrow\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{333+666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c,

Theo đề bài:

ac = bb <=> bb/a = c

ab = cc <=> ab/c = c

=> bb/a = ab/c

=> bbc = aab 

=> bc = ab

Mà cc = ab => cc = bc => b = c

ac/b = b

cc/a = b

=> ac/b = cc/a

=> aac = bcc

=> aa = bc

Mà bc = cc => aa = cc => a = c

=> a = b = c

\(\Rightarrow\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

27 tháng 9 2019

Ta có : 3x = 2y => x/2 = y/3

7x = 5z => x/5 = z/7

 => x/2 = y/3 ; x/5 = z/7

 => x/10 = y/15 ; x/10 = z/21

 => x/10 = y/15 = z/21

 Áp dụng tính chất dãy tỉ số bằng nhau :

 x/10 = y /15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2

đến đây xét x,y,z

 Câu b tương tự