Cho số thực A = \(2+2\sqrt{28x^2+1}\) với x nguyên. Chứng minh rằng nếu A là số nguyên thì A là 1 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài, ta có: \(p^2+a^2=b^2\Rightarrow p^2=b^2-a^2=\left(b+a\right)\left(b-a\right)\)(1)
Vì p là số nguyên tố nên \(p^2\)có 3 ước là \(1;p;p^2\)(2)
Từ (1) và (2) suy ra có 3 khả năng có thể xảy ra là:
Khả năng 1: \(\hept{\begin{cases}b+a=1\\b-a=p^2\end{cases}}\). Điều này không thể xảy ra vì p > 3 nên \(p^2>9\Rightarrow b-a>9>1=b+a\Rightarrow-2a>0\)vô lí vì a nguyên dương
Khả năng 2: \(\hept{\begin{cases}b+a=p\\b-a=p\end{cases}}\Rightarrow b+a=b-a\Rightarrow2a=0\Rightarrow a=0\)(Loại vì a nguyên dương, không thể bằng 0)
Khả năng 3: \(\hept{\begin{cases}b+a=p^2\left(3\right)\\b-a=1\left(4\right)\end{cases}}\)
Lấy (3) - (4), ta được: \(2a=p^2-1=\left(p+1\right)\left(p-1\right)\)
Vì p là số nguyên tố lớn hơn 3 (*) nên p không chia hết cho 3 nên \(p^2\)chia 3 dư 1\(\Rightarrow p^2-1⋮3\)
\(\Rightarrow2a⋮3\)mà \(\left(2,3\right)=1\)nên \(a⋮3\)(**)
Từ (*) suy ra p lẻ nên \(p-1\)và \(p+1\)là hai số chẵn liên tiếp
Đặt \(p-1=2k\left(k\inℕ,k>1\right)\)thì \(p+1=2k+2\Rightarrow\left(p-1\right)\left(p+1\right)=4k\left(k+1\right)\)
Vì \(k\left(k+1\right)\)là tích của hai số nguyên liên tiếp nên \(k\left(k+1\right)⋮2\)suy ra \(4k\left(k+1\right)⋮8\)
hay \(2a⋮8\Rightarrow a⋮4\)(***)
Từ (**) và (***) suy ra \(a⋮12\)do \(\left(3,4\right)=1\)(đpcm)
Vì \(2a=p^2-1\Rightarrow2\left(p+a+1\right)\) \(=2p+2a+2=2p+p^2-1+2=p^2+2p+1=\left(p+1\right)^2\)là số chính phương (đpcm)
\(A=444....444=4.111.....111=4.\frac{10^{2n}-1}{9}\)
\(B=888.....888=8.111.....111=8.\frac{10^n-1}{9}\)
\(\Rightarrow A+2B+4=\frac{4.10^{2n}-4+16.10^n-16+36}{9}=\frac{4.10^{2n}+16.10^n+16}{9}=\left(\frac{2.10^n+4}{3}\right)^2\)
là số hính phương (đpcm)
2) Ta có :
\(x^4+6x^2+25=x^4+10x^2+25-4x^2=\left(x^2+5\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+5\right)\left(x^2+2x+5\right)\)(1)
\(3x^4+4x^2+28x+5=\left(3x^4+6x^3+x^2\right)+\left(-6x^3-12x^2-2x\right)+\left(15x^2+30x+5\right)\)
\(=x^2\left(3x^2+6x+1\right)-2x\left(3x^2+6x+1\right)+5\left(3x^2+6x+1\right)\)
\(=\left(x^2-2x+5\right)\left(3x^2+6x+1\right)\)(2)
Từ (1) ; (2) \(\Rightarrow f\left(x\right)=x^2-2x+5\Rightarrow f\left(2011\right)=2011^2-2.2011+5=4040104\)
1 / Ta chứng minh phản chứng
Giả sử tồn tại a thoả mãn a không phải là số chính phương và căn a là số hữu tỉ ( không vô tỉ thì hữu tỉ chứ còn gì :v )
Tức là căn a biểu diễn dưới dạng m/n ( với m, n là số nguyên, n khác 0 )
căn a = m/n GCD ( m,n ) = 1 ( ước chung lớn nhất của m, n là 1 hay m/n là phân số tối giản )
suy ra a = (m/n)^2 (*)
1/ Giả sử a là số nguyên tố
m^2 = a x n^2
Suy ra m^2 chia hết cho a
mà a là số nguyên tố
suy ra m chia hết cho a
Suy ra m có dạng a x k
Thay vào (*) được a = ((a x k) / n)^2
Suy ra (a x k)^2 = a x n^2
Suy ra a k^2 = n^2
Suy ra n^2 chia hết cho a
Suy ra n chia hết cho a
Vậy m,n cùng chia hết cho a, trái với giả thiết GCD (m,n) = 1. Tức là không tồn tại a
2/ a không phải là số nguyên tố
Tức là a = p x q ( p là số nguyên tố, q là số nguyên dương )
p x q = (m/n)^2
Hay m^2 = p x q x n^2
Đến đây lại suy ra m^2 chia hết cho p nguyên tố
Quay lại chứng minh tương tự như phần 1 ( coi p như a là ổn )