K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 6 2021

1.

\(\Leftrightarrow1-2sin^2x+sinx+m=0\)

\(\Leftrightarrow2sin^2x-sinx-1=m\)

Đặt \(sinx=t\Rightarrow t\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)

Xét hàm \(f\left(t\right)=2t^2-t-1\) trên \(\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-\dfrac{1}{2};\dfrac{\sqrt{2}}{2}\right]\)

\(f\left(-\dfrac{1}{2}\right)=0\) ; \(f\left(\dfrac{1}{4}\right)=-\dfrac{9}{8}\) ; \(f\left(\dfrac{\sqrt{2}}{2}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow-\dfrac{9}{8}\le f\left(t\right)\le0\Rightarrow-\dfrac{9}{8}\le m\le0\)

Có 2 giá trị nguyên của m (nếu đáp án là 3 thì đáp án sai)

NV
1 tháng 6 2021

2.

ĐKXĐ: \(sin2x\ne1\Rightarrow x\ne\dfrac{\pi}{4}\) (chỉ quan tâm trong khoảng xét)

Pt tương đương:

\(\left(tan^2x+cot^2x+2\right)-\left(tanx+cotx\right)-4=0\)

\(\Leftrightarrow\left(tanx+cotx\right)^2+\left(tanx+cotx\right)-4=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx+cotx=\dfrac{1+\sqrt{17}}{2}\\tanx+cotx=\dfrac{1-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)

Nghiệm xấu quá, kiểm tra lại đề chỗ \(-tanx+...-cotx\) có thể 1 trong 2 cái đằng trước phải là dấu "+"

2 tháng 5 2021

undefined

1 tháng 8 2021

\(\dfrac{sin^42x+cos^42x}{tan\left(\dfrac{\pi}{4}-x\right)tan\left(\dfrac{\pi}{4}+x\right)}=cos^4x\)

\(\Leftrightarrow\dfrac{sin^42x+cos^42x}{cot\left(\dfrac{\pi}{4}+x\right)tan\left(\dfrac{\pi}{4}+x\right)}=cos^4x\)

\(\Leftrightarrow sin^42x+cos^42x=cos^4x\)

Giờ hạ bậc nữa là xong rồi. Làm nốt

1 tháng 8 2021

Hình như đề bạn bị lỗi, thấy chỗ nào cũng ghi là \(cos^44x\).

ĐK: \(x\ne\dfrac{3\pi}{4}+k\pi;x\ne\dfrac{\pi}{4}+k\pi\)

\(\dfrac{sin^42x+cos^42x}{tan\left(\dfrac{\pi}{4}-x\right).tan\left(\dfrac{\pi}{4}+x\right)}=cos^44x\)

\(\Leftrightarrow\dfrac{sin^42x+cos^42x}{\dfrac{sin\left(\dfrac{\pi}{4}-x\right)}{cos\left(\dfrac{\pi}{4}-x\right)}.\dfrac{sin\left(\dfrac{\pi}{4}+x\right)}{cos\left(\dfrac{\pi}{4}+x\right)}}=cos^44x\)

\(\Leftrightarrow\dfrac{sin^42x+cos^42x}{\dfrac{cosx-sinx}{cosx+sinx}.\dfrac{cosx+sinx}{cosx-sinx}}=cos^44x\)

\(\Leftrightarrow sin^42x+cos^42x=cos^44x\)

\(\Leftrightarrow1-\dfrac{1}{2}sin^24x=cos^44x\)

\(\Leftrightarrow cos^44x-\dfrac{1}{2}cos^24x-\dfrac{1}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos^24x=1\\cos^24x=-\dfrac{1}{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{2}cos8x=\dfrac{1}{2}\)

\(\Leftrightarrow cos8x=1\)

\(\Leftrightarrow x=\dfrac{k\pi}{4}\)

Đối chiều điều kiện ban đầu ta được \(x=\dfrac{k\pi}{2}\)

23 tháng 5 2021

b, \(VT=\dfrac{1-sin2x}{1+sin2x}\)

\(=\dfrac{sin^2x+cos^2x-2sinx.cosx}{sin^2x+cos^2x+2sinx.cosx}\)

\(=\dfrac{\left(sinx-cosx\right)^2}{\left(sinx+cosx\right)^2}\)

\(=\dfrac{\left(\dfrac{sinx-cosx}{cosx}\right)^2}{\left(\dfrac{sinx+cosx}{cosx}\right)^2}\)

\(=\dfrac{\left(\dfrac{sinx}{cosx}-1\right)^2}{\left(\dfrac{sinx}{cosx}+1\right)^2}\)

\(=\dfrac{\left(tanx-tan\dfrac{\pi}{4}\right)^2}{\left(1+tanx.tan\dfrac{\pi}{4}\right)^2}\)

\(=tan^2\left(x-\dfrac{\pi}{4}\right)=tan^2\left(\dfrac{\pi}{4}-x\right)=VP\)

10 tháng 10 2021

nguyễn thị hương giang 

10 tháng 10 2021

mình trình bày chút, giờ mình ms onl

 

24 tháng 7 2018

ta có : \(VT=\dfrac{2cos2x-sin4x}{2cos2x+sin4x}=\dfrac{2cos2x-2sin2x.cos2x}{2cos2x+2sin2x.cos2x}\)

\(=\dfrac{2cos2x\left(1-sin2x\right)}{2cos2x\left(1+sin2x\right)}=\dfrac{1-sin2x}{1+sin2x}=\dfrac{sin^2x-2sinx.cosx+cos^2x}{sin^2x+2sinx.cosx+cos^2x}\)

\(=\left(\dfrac{sinx-cosx}{sinx+cosx}\right)^2=\left(\dfrac{\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)}{\sqrt{2}cos\left(x-\dfrac{\pi}{4}\right)}\right)=tan^2\left(x-\dfrac{\pi}{4}\right)\)

\(=tan^2\left(\dfrac{\pi}{4}-x\right)=VP\left(đpcm\right)\)

12 tháng 5 2022

Ta có: $sin(\frac{\pi}{6})=\frac{1}{2}$

Do đó $sin(\frac{\pi}{6})=sin(x+ \frac{\pi}{3})\Leftrightarrow \left[\begin{matrix} \frac{\pi}{6}=x+\frac{\pi}{3}+2k\pi & \\ \frac{\pi}{6}= \pi-x-\frac{\pi}{3}+2k\pi& \end{matrix}\right.,k\in\mathbb{Z}$

$\Leftrightarrow \left[\begin{matrix} x=-\frac{\pi}{6}-2k\pi& \\ x=\frac{\pi}{2}+2k\pi& \end{matrix}\right.k\in\mathbb{Z}$

Vì $x \in [-\pi;-2\pi]$ nên ta có:

$\left[\begin{matrix} -\pi\ge \frac{-\pi}{6}-2k\pi\ge-2\pi & \\ -\pi\ge \frac{\pi}{2}+2k\pi\ge-2\pi \end{matrix}\right.\Leftrightarrow \left[\begin{matrix} -\frac{5\pi}{6}\ge -2k\pi\ge-\frac{11\pi}{6} & \\ -\frac{3\pi}{2}\ge +2k\pi\ge-\frac{5\pi}{2} \end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \frac{5}{12}\le k\le \frac{11}{12} & \\ -\frac{3}{4}\ge k \ge-\frac{5}{4} & \end{matrix}\right.$

Vì $k\in\mathbb{Z}$ nên: 

$k=-1$

Vậy phương trình có 1 nghiệm trên $[-\pi;-2\pi]$

10 tháng 5 2022

\(\Leftrightarrow\sin x+\dfrac{\pi}{3}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow2x=\dfrac{\pi}{6}+k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{12}+k\pi\left(k\in Z\right)\)

Vì x ∈ \(\left[-\pi;-2\pi\right]\) ta có:

\(-2\pi\le\dfrac{\pi}{12}+k\pi\le-\pi\)

\(\Leftrightarrow\dfrac{-25\pi}{12}\le k\pi\le-\dfrac{13\pi}{12}\)

\(\Leftrightarrow-\dfrac{25}{12}\le k\le-\dfrac{13}{12}\)

\(\Leftrightarrow-6.5\approx-\dfrac{25}{12}\le k\le-\dfrac{13}{12}\approx-3.4\)

Do k ∈ Z nên k = -1

Vậy PT có 1 nghiệm / \(\left[-\pi;-2\pi\right]\)

11 tháng 5 2022

Ta có: $sin(\frac{\pi}{6})=\frac{1}{2}$

Do đó $sin(\frac{\pi}{6})=sin(x+ \frac{\pi}{3})\Leftrightarrow \left[\begin{matrix} \frac{\pi}{6}=x+\frac{\pi}{3}+2k\pi & \\ \frac{\pi}{6}= \pi-x-\frac{\pi}{3}+2k\pi& \end{matrix}\right.,k\in\mathbb{Z}$

$\Leftrightarrow \left[\begin{matrix} x=-\frac{\pi}{6}-2k\pi& \\ x=\frac{\pi}{2}+2k\pi& \end{matrix}\right.k\in\mathbb{Z}$

Vì $x \in [-\pi;-2\pi]$ nên ta có:

$\left[\begin{matrix} -\pi\ge \frac{-\pi}{6}-2k\pi\ge-2\pi & \\ -\pi\ge \frac{\pi}{2}+2k\pi\ge-2\pi \end{matrix}\right.\Leftrightarrow \left[\begin{matrix} -\frac{5\pi}{6}\ge -2k\pi\ge-\frac{11\pi}{6} & \\ -\frac{3\pi}{2}\ge +2k\pi\ge-\frac{5\pi}{2} \end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \frac{5}{12}\le k\le \frac{11}{12} & \\ -\frac{3}{4}\ge k \ge-\frac{5}{4} & \end{matrix}\right.$

Vì $k\in\mathbb{Z}$ nên: 

$k=-1$

Vậy phương trình có 1 nghiệm trên $[-\pi;-2\pi]$

P/s: em mới học lớp 10 nên không biết làm thế này có đúng không ạ