Tìm số nguyên tố p sao cho:
p+10 và p+14 đều là số nguyên tố
p+6,p+8 và p+14 đều là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc
Xin lỗi tớ chỉ trả lời đucợ phần a mà cx ko biết có đúng không nhưng tớ học dạng này rồi
a)
+ Nếu p = 2 thì p + 10 = 12 là hợp số
p + 20 = 22 là hợp số
\(\Rightarrow\)Loại
+ Nếu p = 3 thì p + 10 = 13 là Số nguyên tố
p + 20 = 23 là số nguyên tố
\(\Rightarrow\) Chọn
+ Nếu p > 3 thì p có dạng 3k + 1; 3k +2 ( k \(\in\)N* )
- Với p = 3k + 1 thì p + 20 = 3k +1 + 20 = 3k+21. Mà 21 \(⋮\)3 \(\Rightarrow\)21 là hợp số
- Với p = 3k +2 thì p + 10 = 3k + 2 + 10 = 3k + 12. Mà 12 \(⋮\)2,6,3,4 \(\Rightarrow\)12 là hợp số
\(\Rightarrow\) Loại
Vậy, p = 3
a, Ta có: p = 2 => p + 10 = 12 là hợp số
p = 3 => p + 10 = 13
p + 20 = 23
Vậy p = 3 thỏa mãn yêu cầu
Giả sử p > 3 thì p sẽ có dạng:
p = 3k + 1 hoặc p = 3k + 2
Với p = 3k + 1 thì p + 20 = 3k + 1 + 20 = 3k + 21 \(⋮\)3
=> p + 20 là hợp số
Với p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3
=> p + 10 là hợp số
Do đó: với p = 3 thỏa mãn yêu cầu đề bài
b, Ta có: p = 2 => p + 2 = 4 là hợp số
p = 3 => p + 6 = 9 là hợp số
p = 5 => p + 2 = 7
p + 6 = 11
p + 8 = 13
p + 14 = 19
Vậy p = 5 thỏa mãn
Giả sử p > 5 thì p sẽ có dạng:
p = 5k + 1; p = 5k + 2; p = 5k + 3; p = 5k + 4
Với p = 5k + 1 thì: p + 14 = 5k + 1 + 14 = 5k + 15 \(⋮\)5
=> p + 14 là hợp số
Với p = 5k + 2 thì: p + 8 = 5k + 2 + 8 = 5k + 10 \(⋮\)5
=> p + 8 là hợp số
Với p = 5k + 3 thì: p + 2 = 5k + 3 + 2 = 5k + 5 \(⋮\)5
=> p + 2 là hợp số
Với p = 5k + 4 thì: p + 6 = 5k + 4 + 6 = 5k + 10 \(⋮\)5
=> p + 6 là hợp số
Do đó: với p = 5 thỏa mãn yêu cầu bài toán
a, Nếu p = 3k (k \(\in\) N ) và p là số nguyên tố
=> k = 1 => p = 3
=> p + 10 = 3 + 10 = 13 (Thỏa mãn là số nguyên tố)
=> p + 14 = 3 + 14 = 17 (Thỏa mãn là số nguyên tố)
Nếu p = 3k + 1
=> p + 14 = 3k + 1 + 14 =3k + 15 = 3(k + 5) chia hết cho 3 (loại)
Nếu p = 3k + 2
=> p + 10 = 3k + 2 + 10 = 3k + 12 = 3(k + 4) chia hết cho 3 (loại)
Vậy p = 3 thì p + 10 và p + 14 đều là số nguyên tố
b, Nếu p = 3k
=> p + 6 = 3k + 6 = 3(k + 2) chia hết cho 3 (loại)
Nếu p = 3k + 1
=> p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k +1) chia hết cho 3 ( loại )
Nếu p = 3k + 2
=> k = 1 => p = 5
=> p + 2 = 5 + 2 = 7 (TM)
=> p + 6 = 5 + 6 = 11 (TM)
=> p + 8 = 5 + 8 = 13 (TM)
Vậy p = 5 thì p + 2; p + 6 và p + 8 đều là số nguyên tố
A ) trước hết cần chú ý rằng mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên)
+) nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1)
+) nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (2)
+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3)
từ (1), (2), (3) suy ra p=3 là giá trị cần tìm.
mK mới làm đc câu a thui !bạn thông cảm
vi p la so nguyen to
đặt p = có dạng 3k, 3k+1, 3k+2
Thay vào
+>p+10=3k+10
p+14=3k+14(chọn)
+>p+10=3k+1+10=3k+11
p+14=3k+1+14=3k+15=>loại
+>p+10=3k+2+10=3k+12=>loại
Từ các bt trên suy ra snt cần tìm là 3
Các câu sau làm tuong tu