K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

SỬa đề: x^3-xy^2

\(A=\left(\dfrac{x\left(x-y\right)}{y\left(x+y\right)}+\dfrac{x^2-y}{x\left(x+y\right)}\right):\left(\dfrac{y^2}{x\left(x^2-y^2\right)}+\dfrac{1}{x-y}\right)\)

\(=\left(\dfrac{x^2\left(x-y\right)+y\left(x^2-y\right)}{xy\left(x+y\right)}\right):\left(\dfrac{y^2}{x\left(x-y\right)\left(x+y\right)}+\dfrac{x\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}\right)\)

\(=\dfrac{x^3-x^2y+x^2y-y^3}{xy\left(x+y\right)}:\dfrac{y^2+x^2+xy}{x\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}\cdot\dfrac{x\left(x-y\right)\left(x+y\right)}{x^2+xy+y^2}=\dfrac{\left(x-y\right)^2}{y}\)

Để A>0 thì y>0

13 tháng 5 2018

A=(xy2+xy−x−yx2+xy) :

A=( \(\dfrac{x}{y\left(x+y\right)}\) - \(\dfrac{x-y}{x\left(x+y\right)}\)) : (\(\dfrac{y^2}{x\left(x-y\right)\left(x+y\right)}\)+\(\dfrac{1}{x+y}\)) : \(\dfrac{x}{y}\)

A=\(\dfrac{x^2-y\left(x-y\right)}{xy\left(x+y\right)}\) : \(\dfrac{y^2+x\left(x-y\right)}{x\left(x-y\right)\left(x+y\right)}\) : \(\dfrac{x}{y}\)

A = \(\dfrac{x^2-xy+y^2}{xy\left(x+y\right)}\) : \(\dfrac{y^2-xy+x^2}{x\left(x-y\right)\left(x+y\right)}\):\(\dfrac{x}{y}\)

A = \(\dfrac{x^2-xy+y^2}{xy\left(x+y\right)}\). \(\dfrac{x\left(x-y\right)\left(x+y\right)}{x^2-xy+y^2}\):\(\dfrac{x}{y}\)

A = \(\dfrac{x-y}{y}\) : \(\dfrac{x}{y}\)

A = \(\dfrac{x-y}{x}\)

A= 1 - \(\dfrac{y}{x}\)>1

=> y/x <0

=> xy<0 , x+y khác 0

19 tháng 11 2021

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

18 tháng 3 2023

\(A=\dfrac{2\left(x^3+y^3\right)}{\left(x^4+y^2\right)\left(x^2+y^4\right)}=2.\dfrac{\left(x^3+y^3\right)}{x^4y^4+x^2y^2+x^6+y^6}\)

\(=2.\dfrac{\left(x^3+y^3\right)}{1+1+x^6+y^6}=2.\dfrac{x^3+y^3}{x^6+y^6+2x^3y^3}=2.\dfrac{x^3+y^3}{\left(x^3+y^3\right)^2}=\dfrac{2}{x^3+y^3}\left(1\right)\)

Áp dụng bất đẳng thức Cauchy ta có:

\(x^3+y^3+1\ge3\sqrt{xy.1}=3\)

\(\Rightarrow x^3+y^3\ge2\Rightarrow\dfrac{2}{x^3+y^3}\le1\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow A\le1\)

Dấu "=" xảy ra khi x=y=1.

Vậy MaxA là 1, đạt được khi x=y=1.

 

 

19 tháng 3 2023

Thanks!

NV
24 tháng 3 2021

\(A=\dfrac{x^2+y^2}{xy}+\dfrac{xy}{x^2+y^2}=\dfrac{x^2+y^2}{4xy}+\dfrac{xy}{x^2+y^2}+\dfrac{3\left(x^2+y^2\right)}{4xy}\)

\(A\ge2\sqrt{\dfrac{\left(x^2+y^2\right)xy}{4xy\left(x^2+y^2\right)}}+\dfrac{3.2xy}{4xy}=\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(x=y\)

\(C=\dfrac{\left(x+y\right)^2-4xy}{xy}+\dfrac{6xy}{\left(x+y\right)^2}=\dfrac{\left(x+y\right)^2}{xy}+\dfrac{6xy}{\left(x+y\right)^2}-4\)

\(C=\dfrac{3\left(x+y\right)^2}{8xy}+\dfrac{6xy}{\left(x+y\right)^2}+\dfrac{5\left(x+y\right)^2}{8xy}-4\)

\(C\ge2\sqrt{\dfrac{18xy\left(x+y\right)^2}{8xy\left(x+y\right)^2}}+\dfrac{5.4xy}{8xy}-4=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(x=y\)

24 tháng 3 2021

Thầy Lâm hộ em ạ .

AH
Akai Haruma
Giáo viên
24 tháng 12 2021

Lời giải:

Áp dụng BĐT AM-GM:

$S=1+\frac{2xy}{x^2+y^2}+2+\frac{x^2+y^2}{xy}$

$=3+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}+\frac{x^2+y^2}{2xy}$

$\geq 3+2\sqrt{\frac{2xy}{x^2+y^2}.\frac{x^2+y^2}{2xy}}+\frac{2xy}{2xy}$

$=3+2+1=6$

Vậy $S_{\min}=6$ khi $x=y$