Cho tam giác ABC có độ dài các cạnh AB, BC, CA là ba số tự nhiên liên tiếp tăng dần. Kẻ đường cao AH, đường trung tuyến AM. Tính độ dài HM.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt AB = x , BC = x + 1 , AC = x + 2 , MH = a
Xét 3 trường hợp
Trường hợp 1 nếu góc B < 90o => BC > AC (khác đề)
Trường hợp 2 nếu góc B = 90 độ (khác đề)
Trường hợp 3 nếu góc B > 90o => AC > BC ( đúng)
Nên ta sẽ đi xét trường hợp 3 : B > 90o ( bạn phải vẽ B > 90o nhé)
HB = MH - BM => HB = a - (x+1)/2 => HB^2 = (a - (x+1)/2)^2
HC = HB + BC => HC = a - x/2 + x => HC^2 = (a + (x+1)/2)^2
Ta có AH^2 = AC^2 - HC^2
AH^2 = AB^2 - HB^2
=> AC^2 - HC^2 = AB^2 - HB^2
<=> (x + 2)^2 - (a+ (x+1)/2)^2 = x^2 - (a - (x+1)/2)^2
<=> x^2 - 4x - 4 - a^2 - ax - a - (x^2+2x+1)/4 = x^2 - a^2 + ax + a - (x^2+2x+1)/4
<=> 2ax + 2a - 4x - 4 = 0
<=> 2a(x+1) - 4(x+1) = 0
<=> (x + 1).2(a - 2) = 0
<=> x = -1 hoặc a = 2
hay AB = -1 hoặc HM = 2 (đpcm)
đặt AB = x , BC = x + 1 , AC = x + 2 , MH = a
Xét 3 trường hợp
Trường hợp 1 nếu góc B < 90o => BC > AC (khác đề)
Trường hợp 2 nếu góc B = 90 độ (khác đề)
Trường hợp 3 nếu góc B > 90o => AC > BC ( đúng)
Nên ta sẽ đi xét trường hợp 3 : B > 90o ( bạn phải vẽ B > 90o nhé)
HB = MH - BM => HB = a - (x+1)/2 => HB^2 = (a - (x+1)/2)^2
HC = HB + BC => HC = a - x/2 + x => HC^2 = (a + (x+1)/2)^2
Ta có AH^2 = AC^2 - HC^2
AH^2 = AB^2 - HB^2
=> AC^2 - HC^2 = AB^2 - HB^2
<=> (x + 2)^2 - (a+ (x+1)/2)^2 = x^2 - (a - (x+1)/2)^2
<=> x^2 - 4x - 4 - a^2 - ax - a - (x^2+2x+1)/4 = x^2 - a^2 + ax + a - (x^2+2x+1)/4
<=> 2ax + 2a - 4x - 4 = 0
<=> 2a(x+1) - 4(x+1) = 0
<=> (x + 1).2(a - 2) = 0
<=> x = -1 hoặc a = 2
hay AB = -1 hoặc HM = 2 (đpcm)
Trường hợp 1 nếu góc B < 90o => BC > AC (khác đề)
Trường hợp 2 nếu góc B = 90 độ (khác đề)
Trường hợp 3 nếu góc B > 90o => AC > BC ( đúng)
Nên ta sẽ đi xét trường hợp 3 : B > 90o ( bạn phải vẽ B > 90o nhé) HB = MH - BM
=> HB = a - (x+1)/2
=> HB^2 = (a - (x+1)/2)^2 HC = HB + BC
=> HC = a - x/2 + x
=> HC^2 = (a + (x+1)/2)^2
Ta có AH^2 = AC^2 - HC^2 AH^2 = AB^2 - HB^2
=> AC^2 - HC^2 = AB^2 - HB^2
<=> (x + 2)^2 - (a+ (x+1)/2)^2 = x^2 - (a - (x+1)/2)^2
<=> x^2 - 4x - 4 - a^2 - ax - a - (x^2+2x+1)/4 = x^2 - a^2 + ax + a - (x^2+2x+1)/4
<=> 2ax + 2a - 4x - 4 = 0
<=> 2a(x+1) - 4(x+1) = 0
<=> (x + 1).2(a - 2) = 0
<=> x = -1 hoặc a = 2 hay AB = -1 hoặc HM = 2
Tham khảo
Đặt AB = x , BC = x + 1 , AC = x + 2 , MH = a Xét 3 trường hợp
Trường hợp 1 nếu góc B < 90o => BC > AC (khác đề)
Trường hợp 2 nếu góc B = 90 độ (khác đề)
Trường hợp 3 nếu góc B > 90o => AC > BC ( đúng)
Nên ta sẽ đi xét trường hợp 3 : B > 90o ( bạn phải vẽ B > 90o nhé) HB = MH - BM
=> HB = a - (x+1)/2
=> HB^2 = (a - (x+1)/2)^2 HC = HB + BC
=> HC = a - x/2 + x
=> HC^2 = (a + (x+1)/2)^2
Ta có AH^2 = AC^2 - HC^2 AH^2 = AB^2 - HB^2
=> AC^2 - HC^2 = AB^2 - HB^2
<=> (x + 2)^2 - (a+ (x+1)/2)^2 = x^2 - (a - (x+1)/2)^2
<=> x^2 - 4x - 4 - a^2 - ax - a - (x^2+2x+1)/4 = x^2 - a^2 + ax + a - (x^2+2x+1)/4
<=> 2ax + 2a - 4x - 4 = 0
<=> 2a(x+1) - 4(x+1) = 0
<=> (x + 1).2(a - 2) = 0
<=> x = -1 hoặc a = 2 hay AB = -1 hoặc HM = 2
Đặt AB = x , BC = x + 1 , AC = x + 2 , MH = a Xét 3 trường hợp
Trường hợp 1 nếu góc B < 90o => BC > AC (khác đề)
Trường hợp 2 nếu góc B = 90 độ (khác đề)
Trường hợp 3 nếu góc B > 90o => AC > BC ( đúng)
Nên ta sẽ đi xét trường hợp 3 : B > 90o ( bạn phải vẽ B > 90o nhé) HB = MH - BM
=> HB = a - (x+1)/2
=> HB^2 = (a - (x+1)/2)^2 HC = HB + BC
=> HC = a - x/2 + x
=> HC^2 = (a + (x+1)/2)^2
Ta có AH^2 = AC^2 - HC^2 AH^2 = AB^2 - HB^2
=> AC^2 - HC^2 = AB^2 - HB^2
<=> (x + 2)^2 - (a+ (x+1)/2)^2 = x^2 - (a - (x+1)/2)^2
<=> x^2 - 4x - 4 - a^2 - ax - a - (x^2+2x+1)/4 = x^2 - a^2 + ax + a - (x^2+2x+1)/4
<=> 2ax + 2a - 4x - 4 = 0
<=> 2a(x+1) - 4(x+1) = 0
<=> (x + 1).2(a - 2) = 0
<=> x = -1 hoặc a = 2 hay AB = -1 hoặc HM = 2
p/s: Dạng này ta có 2 trường hợp cần bàn đến.
Ta có: Đặt \(BC=a\Rightarrow AB=a-1;AC=a+1\)
\(BH=BM-HM\) (với \(B< 90^o\))
\(BH=HM-BM\) (với \(B>90^o\))
\(\Leftrightarrow HB^2=\left(\dfrac{a}{2}-x\right)^2\)
Tương tự: \(HC^2=\left(\dfrac{a}{2}+x\right)^2\)
Ta lại có: \(AB^2-BH^2=AC^2-HC^2=AH^2\)
\(\Leftrightarrow\left(a-1\right)^2-\left(\dfrac{a}{2}-x\right)^2=\left(a+1\right)^2-\left(\dfrac{a}{2}+x\right)^2\)
\(\Leftrightarrow a^2-2a+1-\dfrac{a^2}{4}+ax-x^2=a^2+2a+1-\dfrac{a^2}{4}-ax-x^2\)
\(\Leftrightarrow4a=2ax\Leftrightarrow x=2\)
=> HM=2