GIÚP MIK VỚI :B= x^2/(x+2000)^2 tìm GTLN (cho x>0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)2x^2+3(x-1)(x+1)=5x(x+1)`
`<=>2x^2+3x^2-3=5x^2+5x`
`<=>5x=-3`
`<=>x=-3/5`
__________________________________________
`b)(x-3)^3+3-x=0` nhỉ?
`<=>(x-3)^3-(x-3)=0`
`<=>(x-3)(x^2-1)=0`
`<=>[(x=3),(x^2=1<=>x=+-1):}`
__________________________________________
`c)5x(x-2000)-x+2000=0`
`<=>5x(x-2000)-(x-2000)=0`
`<=>(x-2000)(5x-1)=0`
`<=>[(x=2000),(x=1/5):}`
__________________________________________
`d)3(2x-3)+2(2-x)=-3`
`<=>6x-9+4-2x=-3`
`<=>4x=2`
`<=>x=1/2`
__________________________________________
`e)x+6x^2=0`
`<=>x(1+6x)=0`
`<=>[(x=0),(x=-1/6):}`
\(\left(x-3\right)\left(1-x\right)-2=-x^2+4x-3-2=-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1\)
\(ĐTXR\Leftrightarrow x=2\)
\(\left(x-3\right)\left(1-x\right)-2=4x-x^2-1=-\left(x^2-4x+4\right)+3=-\left(x-2\right)^2+3\le3\)
Dấu \("="\Leftrightarrow x=2\)
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
\(E=-x^2+6x-15=-\left(x^2-6x+9\right)-6=-\left(x-3\right)^2-6\le-6\)
\(maxE=-6\Leftrightarrow x=3\)
Biểu thức này không có GTLN vì nếu cho x > 1 và \(x\rightarrow1\Rightarrow\dfrac{1}{\sqrt{x}-1}\rightarrow\infty\).
Bài làm
a) x( x - 1) = 0
=> x = 0 hoặc x - 1 = 0
=> x = 0 hoặc x = 1
Vậy .....
b) ( x + 1 )( x - 2 ) = 0
=> x + 1 = 0 hoặc x - 2 = 0
=> x = -1 hoặc x = 2
Vậy ...
bai 1.
giai chi tiet cho ban mot bai
\(x\ge\)0 (vi neu x<0 thi ve trai luon >0 VP <0 vo ly)
=>x+3>0=>Ix+3I=x+3
x+4>0=> Ix+4I=x+4
Ix+3I+Ix+4I=(x+3)+(x+4)=2x+7
2x+7=3x
7=3x-2x=x
x=7
\(B=\frac{x^2}{\left(x+2000\right)^2}\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)