Cho a^2 - ab + b^2 chia hết cho 9
Chứng minh rằng a,b chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=(1-3+3^2-3^3)+(3^4-3^5...+(3^96-3^97+3^98-3^99)
a=(1-3+3^2-3^3)+3^4x(1-3+3^2-3^3)+...+3^96x(1-3+3^2-3^3)
a=(-20)+3^4x(-20)+...+3^96x(-20)
a=(-20)+(3^4+3^8+...+3^96)
vi-20chia het cho 4=>achia hetcho 4
a=(1-3+3^2-3^3)+(3^4-3^5...+(3^96-3^97+3^98-3^99)
a=(1-3+3^2-3^3)+3^4x(1-3+3^2-3^3)+...+3^96x(1-3+3^2-3^3)
a=(-20)+3^4x(-20)+...+3^96x(-20)
a=(-20)+(3^4+3^8+...+3^96)
vi-20chia het cho 4=>achia hetcho 4
tick mk nha
bài này thử là nhanh nhất (hi hi , mình đùa vui thôi chứ minh ko bít làm)
Bài 1:
a) P=(a+5)(a+8) chia hết cho 2
Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Vậy P luôn chia hết cho 2 với mọi a
b) Q= ab(a+b) chia hết cho 2
Nếu a chẵn => ab(a+b) chia hết cho 2
Nếu b chẵn => ab(a+b) chia hết cho 2
Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2
Vậy Q luôn chia hết cho 2 với mọi a và b
bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).
Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10 (1)
ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2
=> 5n(n-1)n(n+1) chia hết cho 10 (2)
Từ (1) và (2) => n5- n chia hết cho 10
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......
b) ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
\(a^2-ab+b^2\) \(⋮\)\(9\)
=> \(4\left(a^2-ab+b^2\right)\)\(⋮\)\(9\)
<=> \(3\left(a-b\right)^2+\left(a+b\right)^2\) \(⋮\)\(9\) (1)
hay \(3\left(a-b\right)^2+\left(a+b\right)^2\)\(⋮\)\(3\)
mà \(3\left(a-b\right)^2\)\(⋮\)\(3\)
=> \(\left(a+b\right)^2\)\(⋮\)\(3\) => \(a+b\)\(⋮3\) (*)
Do 3 là số nguyên tố nên suy ra: \(\left(a+b\right)^2\)\(⋮\)\(9\) (2)
Từ (1) và (2) => \(3\left(a-b\right)^2\)\(⋮\)\(9\) => \(\left(a-b\right)^2\)\(⋮\)\(3\) => \(a-b\)\(⋮3\) (**)
Từ (*) và (**) => đpcm