Giup mk vs
1, Cho tam giác ABC vuông tại A, M là trung điểm BC. Trên tia đối của tia MA láy điểm D sao cho AM=MD . CMR:
a) AC vuông góc vs CD
b)AB song song vs CD
c)AM=1/2 x BS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tứ giác ABDC :
AM = MD ; BM = MC
=>Tứ giác ABDC là hình bình hành
Mà góc BAC = 90 = >Tứ giác ABDC là hcn
b)Xét tam giác AID :
AH= HI ; AM = MD (gt)
=> HM song song ID ( đường tb)
=>tứ giác BIDC la ht
AC la trung truc AI = > tam giac ABI can tai B
=> AB = BI ma AB = DC ( ABDC la hcn )=> BI = DC
hay BIDC la hinh thang can
c) Ta có góc ACB = góc AHM = góc AEF
góc BAM = góc ABM
mà góc ABM + góc ACM = 90 => góc AEF + góc BAM = 90 độ hay AM vuông góc EF ( đccm)
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
Bn tự vẽ hình nha!!!
a) Xét \(\Delta ABM\) và \(\Delta DCM\) có:
MB = MC (M là trung điểm BC (gt))
\(\widehat{AMB} = \widehat{DMC}\)(đối đỉnh)
MA = MD (gt)
\(\Rightarrow\)\(\Delta ABM = \Delta DCM (cgc)\)
b) Vì \(\Delta ABM = \Delta DCM (cmt)\)
\(\Rightarrow\)\(\widehat{BAM} = \widehat{CDM}\) (2 góc tương ứng)
mà 2 góc này nằm ở vị trí so le trong
\(\Rightarrow\) AB // CD
c) Vì \(\Delta ABM = \Delta DCM (cmt)\)
\(\Rightarrow\) AB = DC (2 cạnh tương ứng)Vì AB // CD (cmt)\(AB \perp AC \)\(\Rightarrow\) \(CD \perp AC\) (Định lí 2 bài từ vuông góc đến song song)Xét \(\Delta ABC\) và \(\Delta CDA\) có:\(\widehat{BAC} = \widehat{DCA} = 90^0 \)AB = CD (cmt)AC chung\(\Rightarrow\)\(\Delta ABC = \Delta CDA\) (2 cạnh góc vuông)\(\Rightarrow\) AD = BC (2 cạnh tương ứng)mà \(AM=\frac{1}{2}AD\)\(\Rightarrow AM=\frac{1}{2}BC\)