tìm x,y:
\(\sqrt{\left(2x+1\right)^2+4}+3|4y^2-1|+5=7\)
ai làm xong trc mà đúng cho 1 tik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}\sqrt{\left(2x+1\right)^2+4}\ge2\\3\left|4y^2-1\right|\ge0\end{cases}}\)
\(\Rightarrow VT\ge2+0+5=7=VP\)
Dấu bằng xảy ra khi: \(\hept{\begin{cases}\left(2x+1\right)^2=0\\4y^2-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(2y-1\right)\left(2y+1\right)=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\\orbr{\begin{cases}y=\frac{1}{2}\\y=-\frac{1}{2}\end{cases}}\end{cases}}\)
a) \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)
b) \(\sqrt{x-26}+\sqrt{y+20}+\sqrt{z+3}=\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow x+y+z-2\sqrt{x-26}-2\sqrt{y+20}-2\sqrt{z+3}=0\)
\(\Leftrightarrow x-26-2\sqrt{x-26}+1+y+20-2\sqrt{y+20}+1+z+3+2\sqrt{z+3}+1=0\)
\(\Leftrightarrow\left(\sqrt{x-26}-1\right)^2+\left(\sqrt{y+20}-1\right)^2+\left(\sqrt{z+3}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-26}-1=0\\\sqrt{y+20}-1=0\\\sqrt{z+3}-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=27\\y=-19\\z=-2\end{cases}}\)
Coi như bước trên bạn đã làm đúng, giải pt vô tỉ thôi nhé:
TH1: \(x=y\)
\(\Rightarrow x^2+x+2=\sqrt{5x+5}+\sqrt{3x+2}\)
\(\Leftrightarrow x^2-x-1+\left(x+1-\sqrt{3x+2}\right)+\left(x+2-\sqrt{5x+5}\right)=0\)
\(\Leftrightarrow x^2-x-1+\dfrac{x^2-x-1}{x+1+\sqrt{3x+2}}+\dfrac{x^2-x-1}{x+2+\sqrt{5x+5}}=0\)
TH2: \(x=4y+3\)
Đây là trường hợp nghiệm ngoại lai, lẽ ra phải loại (khi bình phương lần 2 phương trình đầu, bạn quên điều kiện nên ko loại trường hợp này)
Dạ em cảm ơn thầy ạ, em ko nhìn ra cách chuyển thành x2 - x - 1 ạ @@
Từ \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
(Cách chứng minh tại đây):
Cho (x+\(\sqrt{y^2+1}\))(y+\(\sqrt{x^2+1}\))=1Tìm GTNN của P=2(x2+y2)+x+y - Hoc24
\(\Rightarrow x+y=0\)
Do đó \(P=100\)
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Ta thấy:
\(\left(2x+1\right)^2\ge0\Leftrightarrow\left(2x+1\right)^2+4\ge4\Leftrightarrow\sqrt{\left(2x+1\right)^2+4}\ge2.\)
\(3\left|4y^2-1\right|\ge0\)
\(\Rightarrow\sqrt{\left(2x+1\right)^2+4}+3\left|4y^2-1\right|\ge2+5\)\(\Leftrightarrow VT\ge VP\)
Dấu ''=" xảy ra khi x=-1/2 và y=1/2
ôh no. toán lớp như thế này ư