tìm UCLN của các số sau 14n+3 và 21n+4 ( với n là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(21n+4;14n+3) là d
=>21n+4 và 14n+3⋮d
=>2(21n+4) và 3(14n+3)⋮d
=>42n+8 và 42n+9⋮d
=>(42n+9)-(42n+8)⋮d
=>1⋮d=>d=1
Vậy với ∀ số tự nhiên n thì ƯCLN(21n+4;14n+3)=1
Gọi d là ƯCLN(21n+4,14n+3)
⇒21n+4⋮d⇒2(21n+4)⋮d
⇒14n+3⋮d⇒3(14n+3)⋮d
⇒3(14n+3)-2(21n+4)⋮d⇒1⋮d
⇒1=d
Vậy với ∀ số tự nhiên n thì ƯCLN(21n+4;14n+3)=1
a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d
=> (14n+3) -(21n+4) \(⋮\)d
=> 3(14n+3) -2(21n+4) \(⋮\)d
=> 42n+9 - 42n -8 \(⋮\)d
=> 1\(⋮\)d
=> 21n+4/14n+3 là phân số tối giản
Vậy...
c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d
=> (6n+4) - (21n+3) \(⋮\)d
=> 7(6n+4) - 2(21n+3) \(⋮\)d
=> 42n +28 - 42n -6\(⋮\)d
=> 22 \(⋮\)cho số nguyên tố d
d \(\in\){11;2}
Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11
Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ
Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11
Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được
Gọi \(A=\left(21n+4,14n+3\right)\)
\(\Rightarrow21n+4⋮A\)
\(14n+3⋮A\)
\(\Rightarrow42n+8⋮A\)
\(42n+9⋮A\)
\(\Rightarrow42n+9-\left(42n+8\right)⋮A\)
\(\Leftrightarrow1⋮A\)
\(\Rightarrow A=1\)
Vậy \(\left(21n+4,24n+3\right)=1\)
Gọi (14n+3,21n+4)=d (d thuộc N)
=>14n+3,21n+4 chia hết cho d
=>3(14n+3)-2(21n+4)=1 chia hết cho d
=>d=1
Vậy 14n+3 và 21n+4 là hai số nguyên tố cùng nhau với mọi số tự nhiên n
\(d=\left(21a+4,14a+3\right)\Rightarrow\hept{\begin{cases}21a+4⋮d\\14a+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}42a+8⋮d\\42a+9⋮d\end{cases}}\Rightarrow\left(42a+9\right)-\left(42a+8\right)=1⋮d\Rightarrow d=1\)
\(\Rightarrow\text{đ}cpm\)
Gọi \(\left(21n+4;14n+3\right)=d\)
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2.\left(21n+4\right)⋮d\\3.\left(14n+3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản với mọi n là số tự nhiên
gọi d là ƯCcủa hai số 21n +4 và 14n+3
21n+4 và 14n+3 chia hết cho d
=>(21n+4)-(14n+3)=7n+1 chia hết cho d
=>2(7n+1)=14n+2 chia hết cho d
=>(14n+3)-(14n+2) =1 chia hết cho d
=>d =1
ƯCLN=1
Gọi d=UCLN(14n+3,21n+4)
Ta có:
14n+3 chia hết cho d
21n+4 chia hết cho d
<=> 3(14n+3)-2(21n+4) chia hết cho d
<=> 1 chia hết cho d <=> d=1
Vậy UCLN(14n+3,21n+4)=1