Tìm tất các cặp số nguyên dương x, y thỏa mãn : x^(y)+y^(x) = 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2x^2+x+2=y\left(2x-1\right)\)
\(\Leftrightarrow y=\dfrac{2x^2+x+2}{2x-1}=x+1+\dfrac{3}{2x-1}\)
\(y\in Z\Rightarrow\dfrac{3}{2x-1}\in Z\)
Mà x nguyên dương \(\Rightarrow2x-1>0\)
\(\Rightarrow2x-1=Ư\left(3\right)\Rightarrow x=\left\{1;2\right\}\)
\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(2;4\right)\)
\(x^2+x+13=y^2\\ \Leftrightarrow x^2-y^2+x+13=0\\ \Leftrightarrow4x^2-4y^2+4x+52=0\\ \Leftrightarrow\left(2x+1\right)^2-4y^2=51\\ \Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=51=51\cdot1=17\cdot3\left(x,y>0\right)\)
Tới đây giải ra các trường hợp thui
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
Do x,y bình đẳng như nhau,giả sử \(x\ge y\)
Khi đó:\(100=x^y+y^x\ge y^y+y^y=2y^y\)
\(\Rightarrow50\ge y^y\)
Với \(y>3\Rightarrow50\ge y^y>y^3\)
\(\Rightarrow4>\sqrt[3]{50}>y\)
\(\Rightarrow3< y< 4\left(KTM\right)\)
\(\Rightarrow y\le3\Rightarrow y\in\left\{1;2;3\right\}\)
Với \(y=1\)
\(\Rightarrow100=x^y+y^x=x+1^x=x+1\)
\(\Rightarrow x=99\left(TM\right)\)
Với \(y=2\)
\(\Rightarrow100=x^2+2^x\)
\(\Rightarrow2^x=100-x^2< 100\)
\(\Rightarrow x< 7\)
Mà x chẵn \(\Rightarrow x\in\left\{2;4;6\right\}\)
Thử vào thấy x=6 thỏa mãn.
Với \(y=3\)
\(\Rightarrow100=x^3+3^x\)
\(\Rightarrow x^3=100-3^x\)
\(\Rightarrow x< 5\)
Mà \(x\ge y\Rightarrow3\le x< 5\)
\(\Rightarrow x=3\left(h\right)x=4\)
Thử vào ta thấy không có x thỏa mãn.
Vậy các cặp số \(\left(x;y\right)\) cần tìm là:\(\left(99;1\right);\left(6;2\right)\) và các hoán vị của chúng
P/S:\(\left(h\right)\) là hoặc.
Ta có : 2 số x và y bình đẳng, không mất tính tổng quát
Các TH :
+ TH1: x = 1 => 1y + y1 = 100 => y + 1 = 100 => y = 99
Tìm được : x = 1 ; y = 99
+ TH2: x = 2 => 2y + y2 = 100 => 1 < y < 7 ( Nếu y = 1 thì lại rơi vào TH 1 )
Nếu : y = 6 => 26 + 62 = 100 ( T/m ) => Tìm đc x = 2; y = 6
y < 6 => 2y + y2 < 100 ( loại )
+ TH3 : x = 3 => 3y + y3 = 100 => 2 < y < 4
Nếu y = 3 => 33 + 33 = 54 < 100 ( loại )
+ TH4 : x \(\ge\)4 => 4y + y4 \(\ge\)44 + 44 = 512 > 100 ( y \(\ge\)4 vì nếu y < 4 sẽ rơi vào các TH trước )
Vậy ( x ; y ) = ( 1 ; 99 ) ; ( 99 ; 1 ) ; ( 2 ; 6 ) ; ( 6 ; 2 )