K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2019

Ta có:

\(a^{2006}+a^{2008}+b^{2006}+b^{2008}\ge2\left(a^{2007}+b^{2007}\right)\)

Dấu = xảy ra khi \(a=b=1\)

\(\Rightarrow S=a^{2009}+b^{2009}=2\)

2 tháng 12 2018

giúp tớ với chiều nay phải nộp rồi

2 tháng 12 2018

xin lỗi mik chưa hok tới

17 tháng 1 2018

24 tháng 11 2018

27 tháng 10 2019

Đáp án A

Giá trị nhỏ nhất đạt được khi a = b = 2 . Vậy S = 3 a + b = 8 .

4 tháng 5 2018

2 tháng 6 2019

Đặt a/b=b/c=c/a=k

=>a=bk; b=ck; c=ak

=>a=bk; b=ak*k=ak^2; c=ak

=>a=ak^3; b=ak^2; c=ak

=>k=1

=>a=b=c

\(B=\dfrac{a^{2022}\cdot a^{2023}}{a^{4045}}=1\)

23 tháng 4 2018

Ta có: \((a^{2007}+b^{2007})\left(a+b\right)-\left(a^{2006}+b^{2006}\right)ab\)

\(=\left(a^{2008}+a^{2007}b+ab^{2007}+b^{2008}\right)-\left(a^{2007}b+ab^{2007}\right)\)

\(=a^{2008}+b^{2008}\)

Mà: \(a^{2006}+b^{2006}=a^{2007}+b^{2007}=a^{2008}+b^{2008}\)    ( * )

\(\Rightarrow\left(a^{2008}+b^{2008}\right)\left(a+b\right)-\left(a^{2008}+b^{2008}\right)ab=a^{2008}+b^{2008}\)

\(\Leftrightarrow\left(a^{2008}+b^{2008}\right)\left(a+b-ab\right)=a^{2008}+b^{2008}\)

\(\Leftrightarrow a+b-ab=1\)

\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)

thay vào (*) ta tính dc: 

a=1 thì\(\orbr{\begin{cases}b=1\\b=0\end{cases}}\)                   b=1 thì \(\orbr{\begin{cases}a=1\\a=0\end{cases}}\)

mặt khác a, b dương => a=1, b=1

Khi đó:   \(a^{2009}+b^{2009}=1+1=2\)

Ta có : \(a^{2006}+b^{2016}=a^{2007}+b^{2007}=a^{2008}+b^{2008}\)

\(\Leftrightarrow\orbr{\begin{cases}a^{2006}+b^{2006}-\left(a^{2007}+a^{2007}\right)=0\left(1\right)\\a^{2008}+b^{2008}-\left(a^{2007}+b^{2007}\right)=0\left(2\right)\end{cases}}\) 

Cộng (1) với (2)  => \(a^{2008}+b^{2008}-2\left(a^{2007}+b^{2007}\right)+a^{2006}+b^{2006}=0\)

\(\Leftrightarrow a^{2008}-2a^{2007}+a^{2006}+b^{2008}-2b^{2007}+b^{2006}\)

\(\Leftrightarrow a^{2006}\left(a^2-2a+1\right)+b^{2006}\left(b^2-2b+1\right)=0\)

\(\Leftrightarrow a^{2006}\left(a-1\right)^2+b^{2006}\left(b-1\right)^2=0\) (*) 

Vì a , b > 0 và : \(\left(a-1\right)^2\ge0\forall a\) ; \(\left(b-1\right)^2\ge0\forall b\)

Nên : phương trình (*) <=> \(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\end{cases}\Leftrightarrow a=b=1}}\)

Vậy \(S=a^{2009}+b^{2009}=1+1=2\)