K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(62\cdot10:\left\{780:\left[103-\left(2\cdot53+35\cdot14\right)\right]\right\}\)

\(=62\cdot10:\left\{780:\left[103-596\right]\right\}\)

\(=620:\dfrac{-780}{493}\)

\(=620\cdot\dfrac{-493}{780}=\dfrac{-15283}{39}\)

14 tháng 7 2021

\(a,\left\{\left[\left(37+13\right):5\right]-45:5\right\}.7\)

\(=\left\{\left[50:5\right]-45:5\right\}.7\)

\(=\left\{10-45:5\right\}.7\)

\(=\left\{10-9\right\}.7\)

\(=1.7=7\)

14 tháng 7 2021

còn câu b?

2 tháng 12 2021
a) {[(37 + 13) : 5] - 45 : 5} . 7 = {[50 : 5] - 45 : 5} . 7 = {10 - 9} . 7 = 1 . 7 = 7 b) 62 . 10 : {780 : [103 - (2 . 53 + 35 . 14)]} = 36 . 10 : {780 : [1 000 - (2 . 125 + 35 . 14)]} = 36 . 10 : {780 : [1 000 - (250 + 490)]} = 36 . 10 : {780 : [1 000 - 740]} = 36 . 10 : {780 : 260} = 36 . 10 : 3 = 360 : 3 = 120

số đó là

228

ai k mình

mình k lại cho

16 tháng 9 2016

35+62+14+52+65= ( 35 + 65 ) + 62 + 14 + 52 = 228

3 tháng 5 2015

\(M=1-\frac{1}{3}+1-\frac{1}{15}+1-\frac{1}{35}+1-\frac{1}{63}+...+1-\frac{1}{9999}\)

\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)

\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)(Có (99 - 1): 2+ 1 = 50 số 1)

\(M=50-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)

\(M=50-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(M=50-\left(1-\frac{1}{101}\right)=50-\frac{100}{101}=\frac{5050-100}{101}=\frac{4950}{101}\)

3 tháng 7 2018

2

Đâu rồi

2 tháng 7 2018

\(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}\)

\(=\frac{3-1}{3}+\frac{15-1}{15}+\frac{35-1}{35}+\frac{63-1}{63}+\frac{99-1}{99}\)

\(=1-\frac{1}{3}+1-\frac{1}{15}+1-\frac{1}{35}+1-\frac{1}{63}+1-\frac{1}{99}\)

\(=5+\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)

\(=5+\frac{1}{2}\left(1-\frac{1}{11}\right)\)

\(=5+\frac{5}{11}=\frac{60}{11}\)

Sửa đề: \(98+99+\dfrac{142}{144}\) \(\rightarrow\dfrac{98}{99}+\dfrac{143}{144}\)  

Giải:

\(A=\dfrac{2}{3}+\dfrac{14}{15}+\dfrac{34}{35}+\dfrac{62}{63}+\dfrac{98}{99}+\dfrac{143}{144}+\dfrac{194}{195}\) 

\(A=\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{15}\right)+\left(1-\dfrac{1}{35}\right)+...+\left(1-\dfrac{1}{195}\right)\) 

\(A=7-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{195}\right)\) 

\(A=7-\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{13.15}\right)\) 

\(A=7-\left[\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{13.15}\right)\right]\) 

\(A=7-\left[\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)\right]\) 

\(A=7-\left[\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{15}\right)\right]\) 

\(A=7-\left[\dfrac{1}{2}.\dfrac{14}{15}\right]\) 

\(A=7-\dfrac{7}{15}\) 

\(A=\dfrac{98}{15}\) 

Chúc bạn học tốt!

4 tháng 6 2018

A = \(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}\)

A = ( 1 - 1/3 ) + ( 1 - 1/15 ) + ( 1 - 1/35 ) + ( 1 - 1/63 ) + ( 1 - 1/99 )

A = ( 1 + 1 + 1 + 1 + 1 ) - ( 1/3 + 1/15 + 1/35 + 1/63 + 1/99 )

A = 5 - \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)

A  = 5 - ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 )

A = 5 - ( 1 - 1/11 ) 

A = 5 - 10/11

A = 45/11

4 tháng 6 2018

Dấu \(.\)là dấu nhân 

\(A=\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}\)

\(\Rightarrow A=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+\left(1-\frac{1}{35}\right)+\left(1-\frac{1}{63}\right)+\left(1-\frac{1}{99}\right)\)

\(\Rightarrow A=\left(1+1+1+1+1\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)

\(\Rightarrow A=5-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)

\(\Rightarrow A=5-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)

\(\Rightarrow A=5-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)

\(\Rightarrow A=5-\frac{1}{2}.\left(1-\frac{1}{11}\right)\)

\(\Rightarrow A=5-\frac{1}{2}.\frac{10}{11}\)

\(\Rightarrow A=5-\frac{5}{11}\)

\(\Rightarrow A=\frac{55}{11}-\frac{5}{11}\)

\(\Rightarrow A=\frac{50}{11}\)

~ Ủng hộ nhé