K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2019

Hình tự vẽ 

a,\(\Delta AMB\)và \(\Delta DMC\)có:

AM = DM (gt)

\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)

MB = MC (gt)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\)(2 góc tương ứng)

\(\Rightarrow AB//CD\)(  vì có cặp góc so le trong bằng nhau )

b,hơi sai sai bn ơi 

28 tháng 2 2021

em tự vẽ hình nha 

xét △AMB và △DMC có:

BM = MC

AM = MD

góc AMB = góc DMC  ( đối đỉnh )

=> △AMB = △DMC 

=> góc ABM = góc DCM và ở vị trí sole trong 

=> AB // CD 

ta có AB vuông góc với AC 

=> CD vuông góc với AC ( đpcm )

 

13 tháng 1 2019

em đã học đường trung bình chưa

13 tháng 1 2019

chưa chị nhưng em đã biết rồi nên chị mà biết thì chỉ cho e

\(\text{#TNam}\)

`a,` Xét Tam giác `AMB` và Tam giác `EMC` có:

`MA=ME (g``t)`

\(\widehat{AMB}=\widehat{CME} (\text {2 góc đối đỉnh})\)

`MB=MC (\text {M là trung điểm của BC})`

`=> \text {Tam giác AMB = Tam giác EMC (c-g-c)}`

`b,` Vì Tam giác `AMB =` Tam giác `EMC (a)`

`-> AB = CE (\text {2 cạnh tương ứng}) (1)`

Xét Tam giác `ABH` và Tam giác `DBH` có:

`HA = HD (g``t)`

\(\widehat{AHB}=\widehat{DHB}=90^0\)

`\text {BH chung}`

`=> \text {Tam giác ABH = Tam giác DBH (c-g-c)}`

`-> AB = BD (\text {2 cạnh tương ứng}) (2)`

Từ `(1)` và `(2) -> CE = BD.`

`c,` Xét Tam giác `AMH` và Tam giác `DMH` có:

`\text {MH chung}`

\(\widehat{AHM}=\widehat{DHM}=90^0\)

`HA = HD (g``t)`

`=> \text {Tam giác AMH = Tam giác DMH (c-g-c)}`

`-> MA = MD (\text {2 cạnh tương ứng})`

Xét Tam giác `AMD: MA = MD`

`-> \text {Tam giác AMD cân tại M}`

*Hoặc nếu như bạn có học rồi, thì mình có thể dùng cái này cũng được nè cậu:>.

Vì `MH` vừa là đường cao (hạ từ đỉnh `->` cạnh đối diện), vừa là đường trung tuyến.

Theo tính chất của tam giác cân `-> \text {Tam giác AMD là tam giác cân} (đpcm).`

loading...

a: Xét ΔAMB và ΔEMC có

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔAMB=ΔEMC

b: Xét ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAD cân tại B

=>BD=BA=CE

c: Xét ΔMAD có

MH vừa là đường cao, vừa là trung tuyến

=>ΔMAD cân tại M

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

22 tháng 11 2017

Bạn vẽ hình đi mk làm cho nha

22 tháng 11 2017

kẻ hình ra đi rồi tao giải cho

a: Xét ΔAMB và ΔEMC co

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔAMB=ΔEMC

b: Xet ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

nên ΔBAD cân tại B

=>BD=BA=CE

c: Xét ΔAMD có

MH vừa là đường cao, vừa là trung tuyến

nên ΔAMD cân tại M

6 tháng 2 2016

vẽ hình nha bạn

ghi từng bài thui

`\color {blue} \text {_Namm_}`

Mình xp sửa đề: Cho Tam giác `ABC (AB<AC)` (chứ nếu để vậy sẽ bị sai lệch thông tin của hình ;-;;)

`a,` Xét Tam giác `AMB` và Tam giác `CME` có:

`AM = EM (g``t)`

\(\widehat{AMB}=\widehat{CME}\) `(2` góc đối đỉnh `)`
`MB=MC (g``t)`

`=>` Tam giác `AMB =` Tam giác `CME (c-g-c)`

`b,` Vì Tam giác `AMB =` Tam giác `CME (a)`

`-> AB=CE (2` cạnh tương ứng `)`

Xét Tam giác `ABH` và Tam giác `DBH` có:

`HA = HD (g``t)`

\(\widehat{AHB}=\widehat{DHB}=90^0\)

`BH` chung

`=>` Tam giác `ABH =` Tam giác `DBH (c-g-c)`

`-> AB=BD (2` cạnh tương ứng `)`

Mà `AB = CE -> BD=CE`

loading...

8 tháng 12 2021

a/  Xét △ABM và △DMC có:

\(\begin{matrix}AM=MD\left(gt\right)\\MB=MC\left(gt\right)\\\hat{AMB}=\hat{CMD}\left(đối\text{ }đỉnh\right)\end{matrix}\)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\) (đpcm).

b/ Ta có: \(\Delta AMB=\Delta DMC\left(cmt\right)\)

\(\Rightarrow\hat{MAB}=\hat{MDC}\); hai góc ở vị trí so le trong.

Vậy: AB // CD (đpcm).

c/ Xét △BAE có:

\(\begin{matrix}BH\perp AE\left(gt\right)\\AH=HE\left(gt\right)\end{matrix}\)

⇒ BH vừa là đường cao, vừa là đường trung tuyến.

⇒ △BAE cân tại B.

\(\Rightarrow BE=BA\). Mà \(AB=CD\left(\Delta AMB=\Delta DMC\right)\)

Vậy: BE = CD (đpcm).