B = 2/1.3 + 2/3.5 + ... + 2/19.21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/49.51
P = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/49 - 1/51
P = 1 - 1/51
P = 50/51
Q = 1/1.3 + 1/3.5 + ... + 1/19.21
Q = 1/2 .(2/1.3 + 2/3.5 + ... + 2/19.21)
Q = 1/2.(1 - 1/3 + 1/3 - 1/5 + ... + 1/19 - 1/21)
Q = 1/2 . (1 - 1/21)
Q = 1/2. 20/21
Q = 10/21
Ủng hộ mk nha ^_-
\(P=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)
\(P=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(P=1-\frac{1}{51}\)
\(P=\frac{50}{51}\)
\(Q=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}\)
\(Q=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{19.21}\right)\)
\(Q=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(Q=\frac{1}{2}.\left(1-\frac{1}{21}\right)\)
\(Q=\frac{1}{2}.\frac{20}{21}\)
\(Q=\frac{10}{21}\)
a) Đặt B= 1/1.3 + 1/3.5 + 1/5.7 + .....+ 1/19.21
Ta có: 2B= 2/1.3 + 2/3.5 + 2/5.7 + ....+ 2/19.21
= 1- 1/3 + 1/3-1/5 + 1/5-1/7 +....+ 1/19-1/21
= 1-1/21 = 20/21
=> B= 20/21 : 2 => B= 10/21
b) Như trên, ta có: 2A= 1- (1/2n + 1) => A=( 1-1/2n+1).1/2
=> A= 1/2- 1/2n+1
=> A< 1/2 ( đpcm )
A=\(\dfrac{2}{1.3}-\dfrac{2}{3.5}-\dfrac{2}{5.7}-.....-\dfrac{2}{23.25}-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{23.25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{23}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\dfrac{22}{75}-\dfrac{1}{27}\)
A=\(\dfrac{227}{675}\)
\(A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-1+\frac{1}{27}-\frac{1}{27}\)
\(=-1\)
\(A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-1+\frac{1}{27}-\frac{1}{27}\)
\(=-1\)
tớ làm câu b thôi, câu a nhân 1/2 lên là đc
\(A=\frac{1}{2}.\left[\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right).\left(2n+1\right)}\right)\right]\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2.n-1}-\frac{1}{2n+1}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2n+1}\right)=\frac{1}{2}-\frac{1}{2.\left(2n+1\right)}< \frac{1}{2}\)
p/s: lưu ý không có dấu "=" đâu nhé vì \(\frac{1}{2.\left(2n+1\right)}>0\left(n\text{ thuộc }N\right)\)
\(B=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{21}\\ B=1-\dfrac{1}{21}=\dfrac{20}{21}\)