Chứng minh rằng
87 _ 218 chia hết cho 14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 87 - 218 = (23)7 - 218 = 221 – 218 = 217.( 24 -2)= 217.(16 - 2) = 24.14 ⋮ 14
Ta có :
87 - 218 = ( 23 )7 - 218= 221 - 218 = 218 ( 23 - 1 ) = 218 . 7 = 217 .2.7 = 217 . 14 ( chia hết cho 14 )
Vậy 87-218chia hết cho 14
\(21^9+21^8+21^7+...+21+1\)
\(=\left(1+21+21^2+21^3+21^4\right)+21^5\left(1+21+21^2+21^3+21^4\right)\)
\(=204205\left(1+21^5\right)⋮5\)
Ta có \(21^9=...1;21^8=...1;...;21^2=...1;21=21\)
Do đó \(21^9+21^8+...+21^2+21+1=...1+...1+...+...1+1\)
Vì tổng trên có 9 lũy thừa của 21 nên tổng bằng \(...9+1=...0⋮5\)
Bạn tham khảo
http://pitago.vn/question/a-chung-minh-rang-1414-1-chia-het-cho-3bchung-minh-rang-58984.html
Trường học Toán Pitago – Hướng dẫn Giải toán – Hỏi toán - Học toán lớp 3,4,5,6,7,8,9 - Học toán trên mạng - Học toán online
Ta có: \(2^{17}+2^{14}\)
\(=2^{14}\left(2^3+1\right)=2^{14}\times9⋮9\)
\(15^3-25^2\)
\(=3^3.5^3-5^4\)
\(=5^3\left(27-5\right)=5^3.2.11⋮11\)
\(2^{17}+2^{14}=2^{14}\left(2^3+1\right)=2^{14}\cdot9\Rightarrow2^{17}+2^{14}⋮9\)
Ta có : 87 = ( 23) 7 = 221
=> 221 - 218 = 218. ( 23 - 1 ) = 218 . 7 = 217 .2 . 7 = 217 . 14
Vì 14 chia hết cho 14
=> 217 .14 chia hết cho 14
Vậy 87 - 218 chia hết cho 14
\(8^7-2^{18}=2^{21}-2^{18}\)
\(=2^{18}\left(2^3-1\right)\)
\(=2^{18}.7\)
\(=2^{17}.2.7\)
\(=2^{17}.14⋮14\left(ĐPCM\right)\)