K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

Ta có  : f(0) = a.02 + b.0 + c = c\(\in\)Z

f(1) = a.12 + b.1 + c = a + b + c \(\in\)Z

Nên a + b \(\in\)Z

f(2) = a.22 + b.2 + c = 4a + 2b + c \(\in\)Z

mà 4a + 2b + c = 2a + 2a + 2b + c = 2a + 2(a+b) + c

Nên 2a \(\in\)Z

10 tháng 11 2016

Giả sử f(0), f(1), f(2) có giá trị nguyên là m,n,p. Theo đề bài ta có

\(1\hept{\begin{cases}c=m\left(1\right)\\a+b+c=n\left(2\right)\\4a+2b+c=p\left(3\right)\end{cases}}\)

Ta lấy (3) - 2(2) + (1) vế theo vế ta được

2a = p - 2n + m

=> 2a là số nguyên

Ta lấy 4(2) - (3) - 3(1) vế theo vế ta được

2b = 4n - p - 3m

=> 2b cũng là số nguyên

12 tháng 7 2021

¿¿¿¿¿¿¿¿

 

2 tháng 4 2017

ko biết

*f(0) nguyên suy ra 0+0+c=c nguyên

*Vì c nguyên và f(1)=a+b+c nguyên suy ra a+b nguyên

*Tương tự vs f(2)=4a+2b+c suy ra 2a nguyên (Vì 4a+2b và 2(a+b) đều nguyên)

Vì 2a và 2(a+b) nguyên suy ra 2b nguyên (đpcm)

22 tháng 2 2019

f(x)=ax2+bx+cf(x)=ax2+bx+c

f(0)=a.02+b.0+c=cf(0)=a.02+b.0+c=c

⇒⇒ c là số nguyên

f(1)=a.12+b.1+c=a+b+cf(1)=a.12+b.1+c=a+b+c

Vì c là số nguyên nên a + b là số nguyên (1)

f(2)=a.22+b.2+c=2(2a+b)+cf(2)=a.22+b.2+c=2(2a+b)+c

Vì c là số nguyên nên 2(2a + b) là số nguyên

⇒⇒ 2a + b là số nguyên (2)

Từ (1) và (2) ⇒⇒ (2a + b) - (a + b) là số nguyên ⇒⇒ a là số nguyên

⇒⇒ b là số nguyên

Vậy f(x) luôn nhận giá trị nguyên với mọi x nguyên.

#ks+Kbn= Add

#Uyên_Ami_BTS   >,<

#Taehyung_stan

22 tháng 2 2019

Ta có f(0) = a.0+ b.0+c =c

=> c là số nguyên

f(1) = a.12+ b.1+c=a +b + c = (a+)b+c

Vi c là số nguyên nên a+b là số nguyên (1)

f(2) = a.22+ b.2+c=2(2a+b)+c

=> 2(2a+b) là số nguyên

=>2a +b là số nguyên (2) 

Từ (1) và (2)

=>(2a +b)-(à+b) là số nguyên => a là số nguyên =>b là số nguyên

=>f(x) luôn nhận giá trị nguyên với mọi x nguyên.

2 tháng 2 2022

Cho `x=0`

`=> f(0) = a.0^2 + b.0 + c`

`=> f(0) = c`

Mà tại `x=0` thì `f(x)` là số nguyên do đó `c` là số nguyên

Cho `x=1`

`=> f(1) = a.1^2 + b.1+c`

`=> f(1)= a+b+c`  (1) 

Mà tại `x=1` thì `f(x)` là số nguyên do đó a+b+c là số nguyên, mặt khác c là số nguyên nên `a+b` là số nguyên

Cho `x= -1`

`=> f(-1) = a.(-1)^2 + b.(-1)+c`

`=> f(-1) = a -b+c` (2)

Từ `(1)` và `(2)`

`=>f(1) + f(-1) =  a+b+c + a-b+c`

`= 2a + 2c` là số nguyên do `f(1)` và `f(-1)` là những số nguyên

Mà `c` là số nguyên nên `2c` là số nguyên

`=> 2a` là số nguyên

Vậy `2a ; a+b ,c` là những số nguyên

Ta có: \(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow f\left(0\right)=a0^2+0b+c\in Z\)

\(\Rightarrow c\in Z\)

\(f\left(1\right)=a1^2+1b+c=a+b+c\in Z\)

Mà \(c\in Z\Rightarrow a+b\in Z\left(1\right)\)

\(f\left(2\right)=a2^2+2b+c=4a+2b+c=2\left(2a+b\right)+c\in Z\)

Vì \(c\in Z\Rightarrow2\left(2a+b\right)\in Z\)

\(\Rightarrow2a+b\in Z\left(2\right)\)

Từ (1) và (2) suy ra: \(\left(2a+b\right)-\left(a+b\right)\in Z\)

\(\Rightarrow2a+b-a-b\in Z\)

\(\Rightarrow a\in Z\)

Từ (1) suy ra \(b\in Z\)

Vậy f(x) luôn nhận giá trị nguyên với mọi x nguyên

có gì ko hiểu thì cứ hỏi tự nhiên ạ~

28 tháng 2 2020

\(f\left(x\right)=ax^2+bx+c\left(1\right)\)

\(\Rightarrow f\left(0\right)=c\in Z\)( vì \(f\left(0\right)\in Z\))

\(\Rightarrow f\left(1\right)=a+b+c\left(4\right)\)Mà \(f\left(1\right)\in Z\)

\(\Rightarrow a+b+c\in Z\)mà \(c\in Z\)

\(\Rightarrow a+b\in Z\Rightarrow2a+2b\in Z\left(2\right)\)

Từ (1) \(\Rightarrow f\left(2\right)=4a+2b+c\in Z\)(vì \(f\left(2\right)\in Z\))

Mà \(c\in Z\)

\(\Rightarrow4a+2b\in Z\left(3\right)\)

 Từ (2) và (3)\(\Rightarrow2a\in Z\Rightarrow a\in Z\)

Từ (4) kết hợp a,c \(\in Z\Rightarrow b\in Z\)

\(\Rightarrow f\left(x\right)\)luôn nhân giá trị nguyên với mọi x nguyên

AH
Akai Haruma
Giáo viên
28 tháng 2 2021

Bạn tham khảo lời giải tại đây:

CHO ĐA thức f(x)=\(ax^3 bx^2 cx d\). Chứng minh rằng nếu f(X) nhận giá tri nguyên vs mọi giá trị nguyên của x thì d,2b,6... - Hoc24

28 tháng 3 2021

help me please 

how to giải bài này