\(M=2+2^2+2^3+2^4+.........+2^{2017}+2^{2018}\)
a)Tính M
b)Chứng tỏ M chia hết cho 3
Help nhé!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A chia hết cho 3 vì
A=2+2^2+2^3+...+2^10
A = ( 2 + 2^2 ) + (2^3 + 2^4 ) + ...+ (2^9 + 2^10)
A = 1 . (1 + 2) + 2^3 . ( 1 + 2 ) + ...+2^9 . ( 1+2 )
A = 1.3 + 2^3 . 3 +...+ 2^9 . 3
A = ( 1 + 2^3 + ...+ 2^9 ) . 3 chia hết cho 3 ( vì 3 chia hết cho 3)
vậy A chia hết cho 3
* m^2+n^2 chia hết cho 3 thì m,n chia hết cho 3
Giả sử m không chia hết cho 3 => m^2 o chia hết cho 3 mà m^2 chia 3 dư 0 hoặc 1 => m^2 chia 3 dư 1 => n^2 chia 3 dư 2 (vô lý)
=>giả sử sai => m chia hết cho 3
Chứng minh tương tự n chia hết cho 3
* m,n chia hết cho 3 => m^2+n^2 chia hết cho 3
Vì m,n chia hết cho 3 => m^2, n^2 chia hết cho 3 => m^2+n^2 chia hết cho 3
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
\(A=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{19}\cdot\left(1+2\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{19}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{19}\right)⋮3\left(đpcm\right)\)
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
M = 2 + 22 + 23 + ... + 220
M = ( 2 + 22 + 23 + 24 ) + ... + ( 217 + 218 + 219 + 220 )
M = 5 ( 1 + 4 + 10 ) + ... + 5 ( 1 + 4 + 10 )
M chia hết cho 5 ( đpcm )
Theo đề bài ta có:
A = \(1+2+2^2+2^3+...+2^{11}\)
\(\Rightarrow A=2^0+2^1+2^2+2^3+...+2^{11}\)
\(\Leftrightarrow A=2^0.\left(1+2+2^2+2^3+2^4+2^5\right)+2^6.\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(\Rightarrow A=2^0.63+2^6.63\)
\(\Rightarrow A=63.\left(2^0+2^6\right)\)
\(\Rightarrow A=63.65\)
Vậy A chia hết cho 13 ( vì 65 chia hết cho 13)
\(a,\)\(M=2+2^2+2^3+2^4+...+2^{2017}+2^{2018}\)
\(2M=2^2+2^3+2^4+2^5+....+2^{2018}+2^{2019}\)
\(M=2^{2019}-2\)
\(b,\)\(M=2+2^2+2^3+2^4+....+2^{2017}+2^{2018}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{2017}+2^{2018}\right)\)
\(=2\left(2+1\right)+2^3\left(2+1\right)+....+2^{2017}\left(2+1\right)\)
\(=3\left(2+2^3+...+2^{2017}\right)⋮3\)