K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh BC

nên H là trung điểm của BC

Xét ΔABC có 

H là trung điểm của BC

N là trung điểm của AC
Do đó: HN là đường trung bình của ΔABC

Suy ra: HN//AB và \(HN=\dfrac{AB}{2}\)

hay HN//AM và HN=AM

Xét tứ giác AMHN có 

HN//AM

HN=AM

Do đó: AMHN là hình bình hành

mà AM=AN

nên AMHN là hình thoi

8 tháng 8 2019

A B C H D E M N I

a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.

b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng

Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)

Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)

Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)

Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)

Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)

Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)

Từ (6) suy ra  ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)

Từ (***) và (****) suy ra đpcm.

c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I

\(\Rightarrow\)^IAC = ^ICA (7)

Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)

Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)

Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.

P/s: Không chắc nha!

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\)

mà \(BH=CH=\dfrac{BC}{2}\)

nên NM=BH=CH

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{MBC}=\widehat{NCB}\)

nên BMNC là hình thang cân

Xét tứ giác MNHB có 

MN//BH

MN=BH

Do đó: MNHB là hình bình hành

b: Ta có: ΔABC cân tại A

mà AH là đường trung tuyến ứng với cạnh đáy BC 

nên AH\(\perp\)BC

Xét tứ giác AHCD có 

N là trung điểm của đường chéo AC

N là trung điểm của đường chéo HD

Do đó: AHCD là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCD là hình chữ nhật

21 tháng 12 2021

a: Xét ΔABC có 

H là trung điểm của BC

N là trung điểm của AC

Do đó: HN là đường trung bình của ΔABC

Suy ra: HN//AM và HN=AM

hay AMHN là hình bình hành

mà AM=AN

nên AMHN là hình thoi

25 tháng 11 2021

lỗi r

 

25 tháng 11 2021

Bài 5 : (2.5 điểm )

Cho tam giác ABC cân tại A.Kẻ AH vuông góc với BC ( H thuộc BC ).Gọi I là trung điểm của AC,E là điểm đối xứng với H qua Y

A ) Chứng minh tứ giác AHCE là hình chữ nhật

B ) Chứng minh tứ giác AHCE là hình bình hành