K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

Ta có: \(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=1\frac{1}{5}\\\frac{xyz}{x+z}=1\frac{1}{12}\end{cases}}\)

=> \(\hept{\begin{cases}\frac{x+z}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{3}{2}\end{cases}}\)

 \(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{zx}=\frac{1}{2}\\\frac{1}{zx}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\zx=3\end{cases}}\)

~ Đến đây bạn làm nốt nhé, tại mình có việc. Xin lỗi ~

# Chúc bạn học tốt #

5 tháng 1 2019

\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=1\frac{1}{15}\\\frac{xyz}{x+z}=1\frac{1}{12}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{15}{16}\\\frac{x+z}{xyz}=\frac{12}{13}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{zx}=\frac{1}{2}\\\frac{1}{zx}+\frac{1}{xy}=\frac{15}{16}\\\frac{1}{xy}+\frac{1}{yz}=\frac{12}{13}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=16\\zx=13\end{cases}}\)

Phần còn lại bn tự làm nhé!

4 tháng 12 2018

\(\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{z+x}{xyz}=\frac{2}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{zx}=\frac{1}{2}\\\frac{1}{zx}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\zx=3\end{cases}}\)

Làm nốt

4 tháng 2 2017

Bài b nhé bạn!

\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)

Trừ lại từng phương trình trong hệ:

\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)

Chia lại từng phương trình trong hệ mới, được:

\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)

Xong rồi đó!!!

18 tháng 1 2017

pt 1) x=y=z  Cosi 3 số 

5 tháng 11 2018

Có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\)

\(\Rightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{3}\)

\(\Rightarrow3.\left(xy+yz+zx\right)=xyz\)(1)

Lại có: \(x+y+z=3\)

\(\Rightarrow\left(x+y+z\right)^2=3^2\)

\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=9\)

Mà: \(x^2+y^2+z^2=17\)

\(\Rightarrow17+2xy+2yz+2xz=9\)

\(\Rightarrow2xy+2yz+2xz=-8\)

\(\Rightarrow xy+yz+zx=-4\)(2)

Thay (2) vào (1) ta có:

\(3.\left(-4\right)=xyz\)

\(xyz=-12\)

Vậy \(xyz=-12\)

Tham khảo nhé~

25 tháng 5 2018

(x+y+z)²=x²+y²+z²+2(xy+yz+zx)

→ x²+y²+z²=(1/2)²-2.(-2)=17/4

(x+y+z)³=x³+y³+z³+3(x+y)(y+z)(z+x)

=x³+y³+z³+3(x+y+z)(xy+yz+zx)-3xyz

→ x³+y³+z³=(1/2)³+3.(-1/2)-3.1/2.(-2)=13/8

(xy+yz+zx)²=x²y²+y²z²+z²x²+2xyz(x+y+z)

→ x²y²+y²z²+z²x²=(-2)²-2.1/2.(-1/2)=9/2

(x²+y²+z²)(x³+y³+z³)=x^5+y^5+z^5+(x²y²+y²z²+z²x²)(x+y+z)-xyz(xy+yz+zx)

→ x^5+y^5+z^5=17/4.13/8+(-2).(-1/2)-9/2.1/2=181/32

21 tháng 7 2020

đây là bài bất IMO 2008 

Đặt \(a=\frac{x}{x-1};b=\frac{y}{y-1};c=\frac{z}{z-1}\)từ đó giả thiết trở thành 

\(abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)Suy ra được : \(a+b+c-ab-bc-ca=1\)

Bài toán bây giờ trở thành chứng minh \(a^2+b^2+c^2\ge2\left(a+b+c-ab-bc-ca\right)-1\)

\(< =>\left(a+b+c-1\right)^2\ge0\)*đúng*

Vậy ta có điều phải chứng minh 

24 tháng 1 2018

Cái bài này bạn làm đc chưa? Hướng dẫn mk ik. >.<

11 tháng 10 2018

Đề kêu chứng minh gì vậy bạn?