Tìm các số tự nhiên x,y,z sao cho \(2018^x+2019^y=2020^z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x\ne y\ne z\ne0\).Ta có: Do VT luôn luôn là số lẻ mà VP luôn luôn là số chẵn(Vô Lý)
Với \(x=0\)\(\Rightarrow1+2019^y=2020^z\)
\(\Rightarrow y=1,z=1\)
Lần lượt thử các trường hợp voiứ y=0,z=0
Xét:
+)z=0=>2020z=1
Mà: 2018x+2019y=2 (vì x,y,z E N) (loại)
+)z >= 1
=> 2020z chẵn
mà 2019z luôn lẻ => 2018x lẻ=>x=0
=> z=1
Vậy: x=0,z=1,y=1
2018x + 2019y = 2020z
TH1 : x = 0 => 20180 + 2019y = 2020z
=> 1 + 2019y = 2020z
=> y = 1 ; z = 1
TH2 : y = 0 => 2018x + 20190 = 2020z
=> 2018x + 1 = 2020z
Vế trái là số lẻ khi x > 1
Vế phải là số chẵn khi x > 1
=> TH2 bị loại
TH3 : x,y,z khác 0
=> 2018x + 2019y là số lẻ
2020z là số chẵn
=> TH3 bị loại
Vậy x = 0 ; y = 1 ; z = 1
Xét x=0⇒1+2019y=2020z⇒y=1, z=1
Xét x≠0⇒2018x+2019y là số lẻ≠2020z