cho 51 số tự nhiên khác o và khác nhau không quá 100 . Chứng minh rằng tồn tại 2 trong số 51 số đó có tổng bằng 101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 51 số đó là a1;a2;a3;...;a50;a51
Không làm mất tính tổng quát, ta giả sử \(a_1< a_2< a_3< ...< a_{51}\)(nhóm số 1 có 51 số)
Xét nhóm số thứ 2 có 51 hiệu: \(100-a_1>100-a_2>100-a_3>...>100-a_{51}\)
Tổng cộng 2 nhóm có 102 số mà 102 số này không quá 100 và khác 0 nên chúng nhận các giá trị 1;2;3;...;100 có 100 giá trị. Vậy theo nguyên lí Đi-rích-lê thì có [102/100]+1=2 số nhận cùng 1 giá trị. Mà hai số này hiển nhiên không thuộc cùng 1 nhóm nên nó sẽ thuộc hai nhóm khác nhau. Gọi chúng là 101-\(a_m\)=\(a_n\) suy ra 100=\(a_m+a_n\)hay ta có đpcm
Sửa khúc cuối nhé!: Gọi hai số đó là \(a_n;101-a_m\left(1\le m;n\le51\right)\Rightarrow a_n=101-a_m\)hay \(a_m+a_n=101\)vậy ta có đpcm
Lấy tập hợp \(A=\left\{a_1;a_2;...;a_{51}\right\}\); \(1\le a_i\le100;a_i\inℕ^∗\)phân biệt
Không mất tính tổng quát: G/S: \(a_1< a_2< ...< a_{51}\)
Theo điều giả sử trên ta có: \(a_1+a_2=51;a_1+a_3=51\)
=> \(a_2=a_3\)vô lí vì \(a_2< a_3\)
Vậy phải tồn tại hai số có tổng khác 101