Xác định giá trị k để đa thức: \(f\left(x\right)=x^4-9x^3+21x^2+x+k\) chia hết cho đa thức \(g\left(x\right)-x^2-x-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P/s: hình như sai tí đấy bạn, đa thức ở dưới phải là \(g\left(x\right)=x^2-x-2\)
Ta có: \(x^2-x-2=\left(x-2\right)\left(x+1\right)\)
Như vậy nếu f(x)chia hết cho \(x^2-x-2,\)thì cũng chia hết cho (x-2)(x+1) . Áp dụng định lí Bezout và định nghĩa phép chia hết, ta thay x=-1 vào \(f\left(x\right):f\left(-1\right)=1+19+21-1+k=0\Rightarrow k=-30\)
Bổ sung cách 1 cho Khả Tâm
Lấy \(\frac{f(x)}{g(x)}\)để tìm số dư và đạt số dư bằng 0 để tìm k.
Ta có : \(x^4-9x^3+21x^2+x+k=\left[x^2-x-2\right]\left[x^2-8x+15\right]+k+30\)
\(f(x)⋮g(x)\)thì cần và đủ là : \(r(x)=k+30=0\Rightarrow k=-30\)
Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )
Khi đó ta có pt :
\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)
\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)
Vì pt trên đúng với mọi x nên :
+) đặt \(x=1\)
\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)
\(\Leftrightarrow-7+a+b+c=0\)
\(\Leftrightarrow a+b+c=7\)(1)
Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :
\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)
Từ (1) và (2) ta có hệ pt 3 ẩn :
\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)
Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)
Vậy....
\(\Leftrightarrow x^4-9x^3+21x^2+x+k⋮x^2+x+2\)
\(\Leftrightarrow x^4+x^3+2x^2-10x^3-10x^2-20x+29x^2+29x+58-8x+k-58⋮x^2+x+2\)
=>-8x+k-58=0
=>k=8x+58