K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

Áp dụng BĐT Schwarz ta có:

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left(2\left(a+b+c\right)\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)

Dấu ''='' xảy ra bạn tự giải nha.

3 tháng 8 2017

bạn có thể giải rõ dc ko 

21 tháng 8 2019

\(\frac{\left(a+b\right)^2}{c}+4c\ge2\sqrt{\frac{\left(a+b\right)^2}{c}\cdot4c}=4\left(a+b\right)\\ \frac{\left(b+c\right)^2}{a}+4a\ge2\sqrt{\frac{\left(b+c\right)^2}{a}\cdot4a}=4\left(b+c\right)\\ \frac{\left(c+a\right)^2}{b}+4b\ge2\sqrt{\frac{\left(c+a\right)^2}{b}\cdot4b}=4\left(c+a\right)\\ \Rightarrow\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}+4\left(a+b+c\right)\ge8\left(a+b+c\right)\\ \Rightarrow\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge4\left(a+b+c\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

16 tháng 10 2019

Áp dụng BĐT Cauchy ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\Rightarrow\frac{1}{\frac{1}{a}+\frac{1}{b}}\le\frac{\sqrt{ab}}{2}\)

Thiết lập tương tự và thu lại ta có :

\(\Rightarrow VP\le4\left(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2}\right)=2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(1\right)\)

Áp dụng BĐT Cauchy ta có : \(a+b\ge2\sqrt{ab}\)
\(\Rightarrow\left(a+b+\frac{1}{2}\right)^2\ge\left(2\sqrt{ab}+\frac{1}{2}\right)^2\ge2.2\sqrt{ab}.\frac{1}{2}=2\sqrt{ab}\)

Thiết lập tương tự và thu lại ta có ;

\(\Rightarrow VT\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(2\right)\)

Từ (1) và (2)  suy ra

\(VT\ge VP\)

\(\Rightarrowđpcm\)

Chúc bạn học tốt !!!

3 tháng 11 2019

Áp dụng bđt Cauchy ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\Rightarrow\frac{1}{\frac{1}{a}+\frac{1}{b}}\le\frac{\sqrt{ab}}{2}\)

Thiết lập tương tự và thu lại ta có :

\(\Rightarrow VP\le4\left(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2}\right)=2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(1\right)\)

Áp dụng bđt Cauchy ta cso :
\(a+b\ge2\sqrt{ab}\)

\(\Rightarrow\left(a+b+\frac{1}{2}\right)^2\ge\left(2\sqrt{ab}+\frac{1}{2}\right)^2\ge2.2\sqrt{ab}.\frac{1}{2}=2\sqrt{ab}\)

Thiết lập tương tự và thu lại ta có :

\(\Rightarrow VT\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(2\right)\)

Từ (1) và (2) 

\(VT\ge VP\)

\(\Rightarrowđpcm\)

Chúc bạn học tốt !!!

11 tháng 2 2018

bđt cần c/m <=>

\(\frac{1}{\left(a+c-b-c\right)^2}+\frac{\left(b+c\right)^2}{\left(a+c\right)^2\left(b+c\right)^2}+\frac{\left(a+c\right)^2}{\left(b+c\right)^2\left(a+c\right)^2}\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2-2\ge2\)(đúng , theo cô-si)

ok

23 tháng 2 2019

Áp dụng bđt Cauchy-Schwarz:

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left(2a+2b+2c\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

5 tháng 12 2019

Lời giải

Ta có: \(\left(a+b+\frac{1}{4}\right)^2=\frac{1}{16}\left(4a+4b-1\right)^2+\left(a+b\right)\ge a+b\)

Tương tự: \(\left(b+c+\frac{1}{4}\right)^2\ge b+c;\left(c+a+\frac{1}{4}\right)^2\ge c+a\)

Như vậy: \(L.H.S\left(VT\right)\ge\left(a+b\right)+\left(b+c\right)+\left(c+a\right)=\left(\frac{1}{\frac{1}{a}}+\frac{1}{\frac{1}{b}}\right)+\left(\frac{1}{\frac{1}{b}}+\frac{1}{\frac{1}{c}}\right)+\left(\frac{1}{\frac{1}{c}}+\frac{1}{\frac{1}{a}}\right)\)

\(\ge4\left(\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{c}+\frac{1}{a}}\right)=R.H.S\left(VP\right)\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{8}\). Ta có đpcm.

5 tháng 12 2019

khác cách tth xíu

Ta có:

\(VP=\Sigma_{cyc}\frac{4}{\frac{1}{a}+\frac{1}{b}}\le\Sigma_{cyc}\frac{4}{\frac{4}{a+b}}=2\left(a+b+c\right)\)

Gio ta di chung minh

\(VT\ge2\left(a+b+c\right)\)

Ta lai co:

\(VT=\Sigma_{cyc}\left(a+b+\frac{1}{4}\right)^2\ge\frac{\left[2\left(a+b+c\right)+\frac{3}{4}\right]^2}{3}\)

Chung minh

\(\frac{\left[2\left(a+b+c\right)+\frac{3}{4}\right]^2}{3}\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\left[2\left(a+b+c\right)-\frac{3}{4}\right]^2\ge0\) (đúng)

Dau '=' xay ra khi \(a=b=c=\frac{1}{8}\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Bài 1:

a) Ta thấy:

\(x^4-2x^3+2x^2-2x+1=(x^4-2x^3+x^2)+(x^2-2x+1)\)

\(=(x^2-x)^2+(x-1)^2\geq 0, \forall x\in\mathbb{R}\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} x^2-x=0\\ x-1=0\end{matrix}\right.\) hay $x=1$

b) Đề sai với $a=0,5; b=2,3; c=0,2$. Nếu đề bài của bạn giống bài dưới đây, tham khảo nó tại link sau:

Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến