K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2020

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được: 

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=9^2+12^2=225\)

hay AB=15cm

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được: 

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=12^2+16^2=400\)

hay AC=20cm

Vậy: AB=15cm; AC=20cm

Ta có: BH+CH=BC(H nằm giữa B và C)

hay BC=9+16=25cm

Ta có: \(AB^2+AC^2=15^2+20^2=625\)

\(BC^2=25^2=625\)

Do đó: \(BC^2=AB^2+AC^2\)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

21 tháng 1 2017

hình tự ve nha]

xét tam giác ABH vuông tại H có:

AB2= AH2+BH2​(định lý py- ta-go)

thay số:AB=13cm, AH=12cm, được:

132=122+BH2

169=144+BH2

BH2=169-144

BH2=25

suy ra: BH=5cm

xét tam giác AHC vuông tại H có

AC2=AH2+HC2(dinh ly py ta go)

​thay số: tu thay nha

tự tìm như ở câu trên ý

suy ra AC=20cm

có BC =BH+HC=5+16=21cm

chu vi hình tam giác ABC là:

13+21=20=54(cm)

k cho minh nha

thanks

19 tháng 1 2017

54 cm 

k cho mk nha

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

b: Xét ΔAHM vuông tại M và ΔAHN vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAHM=ΔAHN

Suy ra: AM=AN

hay ΔAMN cân tại A

c: Ta có: AM=AN

HM=HN

Do đó: AH là đường trung trực của MN

hay AH⊥MN

8 tháng 4 2022

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

cạnh AH chung

AB=AC(vì tam giác ABC cân tại A)

=> ΔAHB=ΔAHC(c.h-c.g.v)

 Xét ΔAHM vuông tại M và ΔAHN vuông tại N có

\(\widehat{HAM}=\widehat{HAN}\)

cạnh AH chung

==> ΔAHM=ΔAHN(c.h-g.n)

==> AM=AN

=> ΔAMN cân tại A ( dấu hiệu)

 

c)Ta có:HM=HN   ;  AM=AN

===>AH là đường trung trực của MN

=>\(\text{AH⊥MN}\)