K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
30 tháng 11 2021

Bài 1: 

\(S=1+3^2+3^4+...+3^{2020}\)

\(=1+\left(3^2+3^4\right)+\left(3^6+3^8\right)+...+\left(3^{2018}+3^{2020}\right)\)

\(=1+3^2\left(1+3^2\right)+3^6\left(1+3^2\right)+...+3^{2018}\left(1+3^2\right)\)

\(=1+10\left(3^2+3^6+...+3^{2018}\right)\)

Suy ra \(S\)có chữ số tận cùng là chữ số \(1\).

DD
30 tháng 11 2021

Bài 2: 

\(A=2+2^2+2^3+...+2^{2016}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{2014}\right)⋮7\)

31 tháng 12 2018

a/Ta có : B= 3+3^2+3^3+...+3^2014

=> 3B= 3.(3+3^2+3^3+...+3^2014)

=> 3B= 3^2+3^3+3^4+...+3^2015

=> 3B-B= 3^2015-3

=> 2B= 3^2015-3

=> B= 3^2015-3/2

b/ mình thấy đề có gì sai sai

bài này mình đi học đội tuyển làm chán rồi nhưng thử vào đề của cậu thì không chia het .Thông cảm nhé

còn câu a thì 3^2 là 3 mũ 2 nhé thấy cậu viết vậy nhìn khổ ghê

13 tháng 5 2023

A không phải là số chính phương nhé!

 Vì ta thấy rằng các số được cộng vào A là các số mũ của 3, bắt đầu từ 3 mũ 1 đến 3 mũ 62. Ta có thể viết lại A dưới dạng tổng sau:

A = 1 + 3 + 3 mũ 2 + ... + 3 mũ 61 + 3 mũ 62 = (3 mũ 0) + (3 mũ 1) + (3 mũ 2) + ... + (3 mũ 61) + (3 mũ 62)

Chú ý rằng đây là cấp số nhân với a_1 = 3 mũ 0 = 1 và r = 3.

Do đó, ta có thể sử dụng công thức tổng cấp số nhân để tính tổng:

A = (3 mũ 63 - 1) / (3 - 1) - 3 mũ 0 = 3 mũ 63 / 2 - 1

Giá trị của A là một số chẵn, vì 3 mũ 63 là một số lẻ nên tổng giữa số này và số âm 1 cũng là một số lẻ. Tuy nhiên, số chẵn không phải là số chính phương, vì một số chính phương luôn có dạng 4k hoặc 4k+1 với k là một số nguyên không âm.

 
13 tháng 5 2023

chi vậy trời