cho a,b,c là 3 cạnh của tam giác CMR : ab/a+b-c+bc/b+c-a+ac/a-b+c>=a+b+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hmm..
Đặt \(\left(x;y;z\right)=\left(a+b-c;b+c-a;c+a-b\right)\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{x+z}{2}\\b=\frac{x+y}{2}\\c=\frac{y+z}{2}\end{cases}}\)
Bất đẳng thức cần chứng minh tương đương với:
\(\frac{\left(x+y\right)\left(x+z\right)}{4x}+\frac{\left(y+z\right)\left(x+y\right)}{4y}+\frac{\left(z+x\right)\left(z+y\right)}{4z}\ge x+y+z\)
Ta có:\(\frac{\left(x+y\right)\left(x+z\right)}{4x}+\frac{\left(y+z\right)\left(x+y\right)}{4y}+\frac{\left(z+x\right)\left(z+y\right)}{4z}\)
\(=\frac{x^2+xy+xz+yz}{4x}+\frac{xy+yz+y^2+zx}{4y}+\frac{zx+zy+z^2+xy}{4z}\)
\(=\frac{3\left(x+y+z\right)}{4}+\frac{1}{4}\left(\frac{yz}{x}+\frac{zx}{y}+\frac{xy}{z}\right)\)\(=\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left(\frac{y^2z^2}{xyz}+\frac{z^2x^2}{xyz}+\frac{x^2y^2}{xyz}\right)\)
\(\ge\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left[\frac{\left(xy+yz+zx\right)^2}{3xyz}\right]\)\(\ge\frac{3}{4}\left(x+y+z\right)+\frac{1}{4}\left[\frac{3xyz\left(x+y+z\right)}{3xyz}\right]\)
\(=x+y+z\)
Bất đẳng thức đã được chứng minh.
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)
cho a,b,c là 3 cạnh của tam giác
CMR:\(\frac{ab}{a+b-c}+\frac{bc}{-a+b+c}+\frac{ac}{a-b+c}\ge a+b+c\)
\(\Leftrightarrow ab\left(\dfrac{1}{b+c}-\dfrac{1}{a+c}\right)+bc\left(\dfrac{1}{a+c}-\dfrac{1}{a+b}\right)+ca\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)=0\)
\(\Leftrightarrow\dfrac{ab\left(a-b\right)}{\left(b+c\right)\left(a+c\right)}+\dfrac{bc\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}+\dfrac{ca\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}=0\)
\(\Leftrightarrow\dfrac{ab\left(a^2-b^2\right)+bc\left(b^2-c^2\right)+ca\left(c^2-a^2\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\) hay tam giác cân
theo bđt tam giác thì VT>0
Chuyển 3 tử thành abc là xong
what ????