Tìm tất cả các số nguyên n sao cho
\(\sqrt{\dfrac{25}{2}+\sqrt{\dfrac{625}{4}-n}}+\sqrt{\dfrac{25}{2}-\sqrt{\dfrac{625}{4}-n}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo: Câu hỏi của Lê Thị Ngọc Duyên - Toán lớp 9 | Học trực tuyến
a,\(3\dfrac{17}{24}+\left(2\dfrac{8}{15}-4\dfrac{8}{15}\right):\left(2\dfrac{11}{30}-\dfrac{11}{30}\right)\)
\(=\dfrac{89}{24}-2:2\)
\(=\dfrac{65}{24}\)
b,\(0,5:\sqrt{625}-\sqrt{\dfrac{4}{25}}+0,18.\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right)\)
\(=0,5:25-\dfrac{2}{5}+0,18.\dfrac{1}{2}\)
\(=-\dfrac{29}{100}\)
a, \(=>3-\sqrt{2}+\sqrt{50}=3-\sqrt{2}+5\sqrt{2}=3+4\sqrt{2}\)
b, \(=>\dfrac{\sqrt[3]{125.5}}{\sqrt[3]{5}}-\sqrt[3]{\left(-4\right).2}=\sqrt[3]{125}-\sqrt[3]{\left(-2\right)^3}\)
\(=5-\left(-2\right)=7\)
c, \(=>\sqrt{6}.\sqrt{\dfrac{6}{2}}-\sqrt{2}-3\sqrt{4.2}=\sqrt{6}.\sqrt{3}-\sqrt{2}-6\sqrt{2}\)
\(=\sqrt{18}-7\sqrt{2}=3\sqrt{2}-7\sqrt{2}=-4\sqrt{2}\)
d, \(=>\dfrac{\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-\dfrac{2}{\sqrt{3}-1}=\sqrt{3}-\dfrac{2}{\sqrt{3}-1}\)
\(=\dfrac{3-\sqrt{3}-2}{\sqrt{3}-1}=\dfrac{1-\sqrt{3}}{\sqrt{3}-1}=-1\)
\(\left(\dfrac{1}{\sqrt{625}}+\dfrac{1}{5}+1\right):\left(\dfrac{1}{25}-\dfrac{1}{\sqrt{25}}-1\right)\)
\(=\left(\dfrac{1}{25}+\dfrac{1}{5}+1\right):\left(\dfrac{1}{25}-\dfrac{1}{5}-1\right)\)
\(=\left(\dfrac{1}{25}+\dfrac{5}{25}+\dfrac{25}{25}\right):\left(\dfrac{1}{25}-\dfrac{5}{25}-\dfrac{25}{25}\right)\)
\(=\dfrac{31}{25}:\left(-\dfrac{29}{25}\right)\)
\(=\dfrac{31}{25}.\left(-\dfrac{25}{29}\right)\)
\(=-\dfrac{31}{29}\)
`A)đk:x>=0,x ne 25`
`A=9=>A=(3+2)/(3-5)=-5/2`
`B)B=(3sqrtx-15+20-2sqrtx)/(x-25)`
`=(sqrtx+5)/(x-25)`
`=1/(sqrtx-5)`
`A=B.|x-4|`
`<=>A/B=|x-4|`
`<=>\sqrtx+2=|x-4|`
`<=>\sqrtx+2=(sqrtx+2)|sqrtx-2|`
`<=>|sqrtx-2|=1`
`+)sqrtx-2=1<=>x=9(tm)`
`+)sqrtx-2=-1<=>x=1(tm)`
Vậy `S={1,9}`
a, Thay x=9 vào biểu thức A ta có
\(A=\dfrac{\sqrt{9}+2}{\sqrt{9}-5}\)
\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=-2,5\)
Vậy A =-2,5 khi x=9
P=A*B
\(=\dfrac{x-7}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{x-7}{\sqrt{x}+2}\)
P nguyên
=>x-4-3 chia hết cho căn x+2
=>căn x+2 thuộc Ư(-3)
=>căn x+2=3
=>x=1
ĐK: \(n\le\dfrac{625}{4}\le156\) (vì \(n\in Z\) )
Đặt \(a=\sqrt{\dfrac{25}{2}+\sqrt{\dfrac{625}{4}-n}}+\sqrt{\dfrac{25}{2}-\sqrt{\dfrac{625}{4}-n}}\) \(\left(a\ge0,a\in Z\right)\)
\(\Rightarrow a^2=25+2\sqrt{\dfrac{625}{4}-\dfrac{625}{4}+n}\)
\(\Rightarrow a^2=25+2\sqrt{n}\) (1)
Để \(a\in Z\Rightarrow a^2\in Z\Rightarrow\sqrt{n}\in Z^+\)
Vì \(2\sqrt{n}⋮2\) mà 25 không chia hết cho 2
\(\Rightarrow a^2\) không chia hết cho 2
\(\Rightarrow\) a không chia hết cho 2
Đặt \(a=2k+1\left(k>0,k\in Z\right)\)
\(\left(1\right)\Rightarrow\left(2k+1\right)^2=25+2\sqrt{n}\)
\(\Rightarrow2\sqrt{n}=4k^2+4k-24\)
\(\Rightarrow\sqrt{n}=2k^2+2k-12\)
Vì \(\sqrt{n}\ge0\Rightarrow2k^2+2k-12\ge0\)
\(\Rightarrow\left(k+3\right)\left(k-2\right)\ge0\)
Vì \(k>0\Rightarrow k\ge2\) (2)
Mặt khác: \(n\le156\Rightarrow\sqrt{n}\le\sqrt{156}\) mà \(\sqrt{n}\in Z\)
\(\Rightarrow\sqrt{n}\le12\Rightarrow2k^2+2k-12\le12\)
\(\Rightarrow\left(k-3\right)\left(k+4\right)\le0\)
Vì \(k>0\Rightarrow0< k\le3\) (3)
Từ (2) và (3)\(\Rightarrow\left[{}\begin{matrix}k=2\\k=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=0\\n=144\end{matrix}\right.\) (t/m)
Vậy n=0, n=144
Nguyễn Việt Lâm Uyen Vuuyen Trần Trung Nguyên JakiNatsumi Vương Đại Nguyên bullet sivel Nguyễn Thanh Hằng KHUÊ VŨ @Nk>↑@ mấy best toán chỉ e với