\(3\left(x\sqrt{y-9}+y\sqrt{x-9}\right)=xy\)
Tính \(S=\left(x-17\right)^{2018}+\left(y-19\right)^{2019}\)
Nể giúp tôi giải toán đăng mấy bài khó khó như thế này không ai giải hộ lần nào cũng vậy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(VT=\sqrt{9x\left(xy-9x\right)}+\sqrt{9y\left(xy-9y\right)}\le\frac{9x+xy-9x}{2}+\frac{9y+xy-9y}{2}\)
\(=xy=VP\)
Dấu = xảy ra khi \(x=y=18\)
\(\Rightarrow S=\left(18-17\right)^{2018}+\left(18-19\right)^{2019}=1-1=0\)
Ta có:
VT=\sqrt{9x\left(xy-9x\right)}+\sqrt{9y\left(xy-9y\right)}\le\frac{9x+xy-9x}{2}+\frac{9y+xy-9y}{2}VT=9x(xy−9x)+9y(xy−9y)≤29x+xy−9x+29y+xy−9y
=xy=VP=xy=VP
Dấu = xảy ra khi x=y=18x=y=18
\Rightarrow S=\left(18-17\right)^{2018}+\left(18-19\right)^{2019}=1-1=0⇒S=(18−17)2018+(18−19)2019=1−1=0
Mai Thị Thanh xuân
trong câu hỏi tương tự có ông nào giải rồi ấy
may thay ổng không phải người Nam :v
tưởng dân Nam Định nó thi cái này mấy hôm trước rồi mà sao giờ còn đăng zị
\(3\left(x\sqrt{y-9}+y\sqrt{x-9}\right)=xy\Leftrightarrow\dfrac{3x\sqrt{y-9}+3y\sqrt{x-9}}{xy}=1\)
\(\Leftrightarrow\dfrac{3\sqrt{x-9}}{x}+\dfrac{3\sqrt{y-9}}{y}=1\)
Áp dụng BĐT \(a.b\le\dfrac{a^2+b^2}{2}\) ta có:
\(\dfrac{3\sqrt{x-9}}{x}+\dfrac{3\sqrt{y-9}}{y}\le\dfrac{3^2+x-9}{2x}+\dfrac{3^2+y-9}{2y}=\dfrac{1}{2}+\dfrac{1}{2}=1\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-9}=3\\\sqrt{y-9}=3\end{matrix}\right.\) \(\Rightarrow x=y=18\)
Thay vào P ta được:
\(P=\left(18-17\right)^{2018}+\left(18-19\right)^{2019}=1^{2018}+\left(-1\right)^{2019}=1-1=0\)
em muon giup nhung moi co lop 8 ak sr