Cho a,b,c > 0 và abc=1. CMR :\(\dfrac{a^4b}{a^2+1}+\dfrac{b^4c}{b^2+1}+\dfrac{c^4a}{c^2+1}\)\(\ge\dfrac{3}{2}\).
Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dạng này chắc chắc là phải dùng AM-GM ngược dấu rồi :)
Ta có:
\(\dfrac{1+b}{1+4a^2}=1+b-\dfrac{4a^2\left(b+1\right)}{4a^2+1}\ge1+b-\dfrac{4a^2\left(b+1\right)}{4a}=1+b-a\left(b+1\right)\)
Tương tự cho 2 BĐT còn lại ta có:
\(\dfrac{1+c}{1+4b^2}\ge1+c-b\left(c+1\right);\dfrac{1+a}{1+4c^2}\ge1+a-c\left(a+1\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT=\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+c^2}\)
\(\ge3+\left(a+b+c\right)-\left(ab+bc+ca\right)-\left(a+b+c\right)\)
\(=3-\dfrac{1}{3}\left(a+b+c\right)^2=3-\dfrac{1}{3}\cdot\dfrac{9}{4}=\dfrac{9}{4}=VP\)
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{2}\)
\(VT=\left(\dfrac{a}{1+4c^2}+\dfrac{b}{1+4a^2}+\dfrac{c}{1+4b^2}\right)+\left(\dfrac{1}{1+4c^2}+\dfrac{1}{1+4a^2}+\dfrac{1}{1+4b^2}\right)\)
\(VT=\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)+3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\)
Xét \(\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}1+4c^2\ge2\sqrt{4c^2}=4c\\1+4a^2\ge2\sqrt{4a^2}=4a\\1+4b^2\ge2\sqrt{4b^2}=4b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4c^2a}{1+4c^2}\le\dfrac{4c^2a}{4c}=ca\\\dfrac{4a^2b}{1+4a^2}\le\dfrac{4a^2b}{4a}=ab\\\dfrac{4b^2c}{1+4b^2}\le\dfrac{4b^2c}{4b}=bc\end{matrix}\right.\)
\(\Rightarrow\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)\ge\dfrac{3}{2}-\left(ab+bc+ca\right)\) (1)
Xét \(3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}1+4c^2\ge2\sqrt{4c^2}=4c\\1+4a^2\ge2\sqrt{4a^2}=4a\\1+4b^2\ge2\sqrt{4b^2}=4b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4c^2}{1+4c^2}\le\dfrac{4c^2}{4c}=c\\\dfrac{4a^2}{1+4a^2}\le\dfrac{4a^2}{4a}=a\\\dfrac{4b^2}{1+4b^2}\le\dfrac{4b^2}{4b}=b\end{matrix}\right.\)
\(\Rightarrow3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\ge\dfrac{3}{2}\) (2)
Từ (1) và (2)
\(\Rightarrow VT\ge\dfrac{3}{2}-\left(ab+bc+ca\right)+\dfrac{3}{2}\)
\(\Rightarrow VT\ge3-\left(ab+bc+ca\right)\) (3)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{3}{4}\ge ab+bc+ca\)
\(\Rightarrow3-\dfrac{3}{4}\le3-\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{9}{4}\le3-\left(ab+bc+ca\right)\) (4)
Từ (3) và (4)
\(\Rightarrow VT\ge\dfrac{9}{4}\)
\(\Leftrightarrow\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+4c^2}\ge\dfrac{9}{4}\) (đpcm)
Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{2}\)
Bài 1:
Dự đoán dấu "=" xảy ra khi \(a=b=c=1\) ta tính được giá trị là \(9\)
Ta sẽ chứng minh nó là GTLN
Thật vậy ta cần chứng minh
\(\Sigma\dfrac{11a+4b}{4a^2-ab+2b^2}\le\dfrac{3\left(ab+ac+bc\right)}{abc}\)
\(\LeftrightarrowΣ\left(\dfrac{3}{a}-\dfrac{11a+4b}{4a^2-ab+2b^2}\right)\ge0\)
\(\LeftrightarrowΣ\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}\ge0\)
\(\LeftrightarrowΣ\left(\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}+\dfrac{1}{b}-\dfrac{1}{a}\right)\ge0\)
\(\LeftrightarrowΣ\dfrac{\left(a-b\right)^2\left(a+b\right)}{ab\left(4a^2-ab+2b^2\right)}\ge0\) (luôn đúng)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)
\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\)
Tương tự rồi cộng theo vế ta có:
\(Σ\dfrac{1}{a^5+b^2+c^2}\le\dfrac{Σ\dfrac{1}{a}+2Σa^2}{\left(a^2+b^2+c^2\right)^2}\)
Ta chứng minh \(Σ\dfrac{1}{a}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) - BĐT cuối đúng
Vậy ta có ĐPCM. Dấu "=" xảy ra khi \(a=b=c=1\)
Bài 3:
Từ \(a+b+c=3abc\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow xy+yz+xz=3\) và BĐT cần chứng minh là
\(x^3+y^3+z^3\ge3\). Áp dụng BĐT AM-GM ta có:
\(x^3+x^3+1\ge3\sqrt[3]{x^3\cdot x^3\cdot1}=3x^2\)
Tương tự có: \(y^3+y^3+1\ge3y^2;z^3+z^3+1\ge3z^2\)
Cộng theo vế 3 BĐT trên ta có:
\(2\left(x^3+y^3+z^3\right)+3\ge3\left(x^2+y^2+z^2\right)\)
Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3\left(xy+yz+xz\right)=9\left(xy+yz+xz=3\right)\)
\(\Rightarrow2\left(x^3+y^3+z^3\right)+3\ge9\Rightarrow2\left(x^3+y^3+z^3\right)\ge6\)
\(\Rightarrow x^3+y^3+z^3\ge3\). BĐT cuối đúng nên ta có ĐPCM
Đẳng thức xảy ra khi \(a=b=c=1\)
T/b:Vâng, rất giỏi
1)Từ đề bài:
`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`
`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`
`<=>a=b=c-2`
`ab+bc+ca=abc`
`<=>1/a+1/b+1/c=1`
`<=>(1/a+1/b+1/c)^2=1`
`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`
`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`
`a+b+c=0`
Chia 2 vế cho `abc`
`=>1/(ab)+1/(bc)+1/(ca)=0`
`=>2/(ab)+2/(bc)+2/(ca)=0`
`=>1/a^2+1/b^2+1/c^2=1-0=1`
\(4.\left(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}-\dfrac{3}{2}\right)+\dfrac{ab^2+bc^2+ca^2+abc}{a^2b+b^2c+c^2a+abc}-1\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{a^2b+b^2c+c^2a+abc}-2.\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)-2\left(a^2b+b^2c+c^2a+abc\right)\right]}{\left(a^2b+b^2c+c^2a+abc\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2}{\left(a^2b+b^2c+c^2a+abc\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
Bất đẳng thức hiển nhiên đúng
Vậy ta có điều phải chúng minh. Dấu hằng đẳng thức xảy ra khi \(a=b=c\)
-Chúc bạn học tốt-
Bạn giải thích hộ mình từ dòng 1 xuống dòng 2 đc ko ạ ?
Lời giải:
Do $abc=1$ nên tồn tại $x,y,z>0$ sao cho:\((a,b,c)=\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)\)
Bài toán trở thành:
Cho $x,y,z>0$. CMR: \(\frac{x^4}{yz(x^2+y^2)}+\frac{y^4}{xz(y^2+z^2)}+\frac{z^4}{xy(z^2+x^2)}\geq \frac{3}{2}\)
Thật vậy, áp dụng BĐT Cauchy-Schwarz:
\(\frac{x^4}{yz(x^2+y^2)}+\frac{y^4}{xz(y^2+z^2)}+\frac{z^4}{xy(z^2+x^2)}=\frac{x^6}{x^2yz(x^2+y^2)}+\frac{y^6}{y^2xz(y^2+z^2)}+\frac{z^6}{z^2xy(z^2+x^2)}\)
\(\geq \frac{(x^3+y^3+z^3)^2}{x^2yz(x^2+y^2)+y^2xz(y^2+z^2)+z^2xy(z^2+x^2)}=\frac{(x^3+y^3+z^3)^2}{xyz(x^3+y^3+z^3+xy^2+yz^2+zx^2)}(*)\)
Áp dụng BĐT AM-GM:
\(x^3+y^3+z^3\geq 3xyz\Rightarrow \frac{x^3+y^3+z^3}{3}\geq xyz(1)\)
Và:
\(x^3+y^3+y^3\geq 3xy^2; y^3+z^3+z^3\geq 3yz^2; z^3+x^3+x^3\geq 3zx^2\)
Cộng theo vế và rút gọn \(\Rightarrow x^3+y^3+z^3\geq xy^2+yz^2+zx^2\)
\(\Rightarrow 2(x^3+y^3+z^3)\geq x^3+y^3+z^3+xy^2+yz^2+zx^2(2)\)
Từ \((1);(2)\Rightarrow \frac{2}{3}(x^3+y^3+z^3)^2\geq xyz(x^3+y^3+z^3+xy^3+yz^2+zx^2)(**)\)
Từ \((*);(**)\Rightarrow \frac{x^4}{yz(x^2+y^2)}+\frac{y^4}{xz(y^2+z^2)}+\frac{z^4}{xy(z^2+x^2)}\geq \frac{(x^3+y^3+z^3)^2}{\frac{2}{3}(x^3+y^3+z^3)^2}=\frac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$