Cho tam giác abc vuông tại A,tia phân giác góc ABC cắt AC tại D .Trên cạnh BC lấy điểm E sao cho BE=BA
a,CM tam giác ABD=tam giác EBD
b,CM BD là đường trung trực của AE
Các bạn không cần phải vẽ hình đâu!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
BA=BE
=>ΔBAD=ΔBED
b: Xét ΔBAE có BA=BE và góc B=60 độ
nên ΔBAE đều
=>BE=AB=6cm
=>BC=12cm
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
Suy ra: DA=DE
Ta có: ΔABD=ΔEBD
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BC
c: Ta có: BE=BA
nên B nằm trên đường trung trực của EA(1)
Ta có: DE=DA
nên D nằm trên đường trung trực của EA(2)
Từ (1) và (2) suy ra BD là đường trung trực của EA
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
BA=BE
=>ΔBAD=ΔBED
=>AD=ED
b: BA=BE
DA=DE
=>BD là trung trực của AE
AD=DE
DE<DC
=>AD<DC
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>E,D,F thẳng hàng
A: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE và góc BED=90 độ
b: BA=BE
DA=DE
=>BD là trung trực của AE
DA=DE
DE<DC
=>DA<DC
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đó: ΔBAD=ΔBED
=>BA=BE
=>ΔBAE cân tại B
b: ΔBAD=ΔBED
=>góc BED=90 độ
=>DE vuông góc với BC
c: ΔBAD=ΔBED
=>BA=BE và DA=DE
=>BD là trung trực của AE
nếu bạn không phiền thì có thể vẽ hình ra được không ạ :((
a) Xét \(\Delta ABD\)và \(\Delta EBD\)có:
\(BA=BE\left(gt\right)\)
\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)
\(BD\)là cạnh chung
Do đó: \(\Delta ABD=\Delta EBD\left(c.g.c\right)\)
a, xét tam giác abd và tam giác ebdcó
ba=be(gt)
góc abd=góc ebd(gt)
bd chung
=>tam giác abd =tam giác ebd (cgc)
b,gọi i là giao điểm của ae và bd
ta có ba=be(gt)=>b cách đều a và e=>bd vuông góc vs ae<=>bi vuông góc vs ae(i thuộc bd)
xét tam giác abi và tam giác ebi có
ba=be(gt)
góc abd=góc ebd(gt)
bi chung
=>tam giác abi=tam giác ebi(CGC)
=>ai=ie(2 cạnh tg ứng)
=> bi là đường trung tuyến đồng thời là đường vuông góc của ae
=>bi là đường trung trực của ae <=>bd là đường trung trực của ae (i thuộc bd)