cho tam giác abc vuông tại a. các tia phân giác của góc b,c cắt nhau tại . kẻ ik vuông góc với bc. cmr kb.kc=1/2.ab.ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Vì các tia phân giác của các góc B và C cắt nhau tại I
\(\Rightarrow\)I là giao của các đường phân giác trong tam giác
\(\Rightarrow\)AI là tia phân giác của góc A
1.
Kẻ: \(ID\perp AB;IE\perp BC;IF\perp AC\)
\(\widehat{IDB}=\widehat{IEB}=90^0\)
\(\widehat{DBI}=\widehat{EIB}\left(gt\right)\)
BI cạnh huyền chung
⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)
Suy ra: ID = IE (hai cạnh tương ứng) (1)
Xét hai tam giác vuông IEC và IFC, ta có ;
\(\widehat{IEC}=\widehat{IFC}=90^0\)
\(\widehat{ECI}=\widehat{FCI}\left(gt\right)\)
CI canh huyền chung
Suy ra: ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)
Suy ra: IE = IF (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: ID = IF
Xét hai tam giác vuông IDA và IFA, ta có:
\(\widehat{IDA}=\widehat{IFA}=90^0\)
ID = IF (chứng minh trên)
AI cạnh huyền chung
Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)
Suy ra\(\widehat{DAI}=\widehat{FAI}\) (hai góc tương ứng)
Vậy AI là tia phân giác của \(\widehat{A}\)
a) chứng minh: tam giác ABD= tam giác ACD xét tam giác ABD và tam giác ACD có: AB=AC( giả thuyết) AD: cạnh chung Góc BDA=Góc ADC = 90 độ suy ra: tam giác ABD = tam giác ACD (c.g.c)
\(a,\left\{{}\begin{matrix}AB=AC\\\widehat{BAD}=\widehat{CAD}\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\\ b,\left\{{}\begin{matrix}\widehat{IAD}=\widehat{CAD}\\\widehat{DIA}=\widehat{DKC}=90^0\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta AID=\Delta AKD\left(ch-gn\right)\\ \Rightarrow DI=DK;\widehat{IDA}=\widehat{KDA}\\ \text{Mà }\widehat{ADB}=\widehat{ADC}\\ \Rightarrow\widehat{ADB}-\widehat{IDA}=\widehat{ADC}-\widehat{KDA}\\ \Rightarrow\widehat{IDB}=\widehat{KDC}\\ c,AI=AK\\ \Rightarrow\Delta AIK\text{ cân tại }A\\ \Rightarrow\widehat{AIK}=\dfrac{180^0-\widehat{A}}{2}\\ \Delta ABC\text{ cân tại A}\\ \Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\\ \Rightarrow\widehat{AIK}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị nên IK//BC
Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath
Tham khảo bài 3 tại link trên nhé!