cho x,y,z>0
tìm GTNN của biểu thức
\(\frac{\sqrt{x}}{\sqrt{y}+\sqrt{z}}+\frac{\sqrt{y}}{\sqrt{z}+\sqrt{x}}\)\(+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{\sqrt{x}+\sqrt{y}}-\frac{y}{\sqrt{x}+\sqrt{y}}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{x}-\sqrt{y}\)
\(tt:\frac{y-z}{\sqrt{y}+\sqrt{z}}=\sqrt{y}-\sqrt{z};.....\)
\(\Rightarrow\frac{x}{\sqrt{x}+\sqrt{y}}-\frac{y}{\sqrt{y}+\sqrt{x}}+.....-\frac{x}{\sqrt{x}+\sqrt{z}}=0\Rightarrow dpcm\)
Gọi \(T=...\)
\(T+3=\frac{\sqrt{x}}{\sqrt{y}+\sqrt{z}}+1+\frac{\sqrt{y}}{\sqrt{z}+\sqrt{x}}+1+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}+1\)
\(T+3=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}\right)\)
\(\ge\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right).\frac{\left(1+1+1\right)^2}{2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}=\frac{9}{2}\)\(\Rightarrow\)\(T\ge\frac{9}{2}-3=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)
...
Đặt \(\hept{\begin{cases}\sqrt{x}=a\\\sqrt{y}=b\\\sqrt{z}=c\end{cases}\left(a,b,c>0\right)}\)
Đặt \(P=\frac{\sqrt{x}}{\sqrt{y}+\sqrt{z}}+\frac{\sqrt{y}}{\sqrt{z}+\sqrt{x}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}\)
\(\Rightarrow P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\Rightarrow P+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\)
\(P+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\)
\(P+3=\frac{a}{b+c}+\frac{b+c}{b+c}+\frac{b}{c+a}+\frac{c+a}{c+a}+\frac{c}{a+b}+\frac{a+b}{a+b}\)
\(2\left(P+3\right)=2.\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(2\left(P+3\right)=\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
Áp dụng BĐT AM-GM ta có:
\(2\left(P+3\right)\ge3.\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.3.\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}=9.\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.\frac{1}{\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\)
\(\left(\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ne0\right)\)
\(\Leftrightarrow P+3\ge4,5\)
\(\Leftrightarrow P\ge1,5\)
\(P=1,5\Leftrightarrow a=b=c\Leftrightarrow\sqrt{x}=\sqrt{y}=\sqrt{z}\Leftrightarrow x=y=z\)
Vậy \(P_{min}=1,5\Leftrightarrow x=y=z\)