K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2016

khó quá

25 tháng 11 2017

kho the

9 tháng 12 2018

thiếu điểm A bạn ạ

9 tháng 12 2018

Xet tam giac AOC va BOC co

OA=OB

chung OC 

AC=BC (cùng ban kinh)

tam giac AOC=AOB(c.c.c)

goc AOC=BOC

OClà tia pg của goc xOy

Hình tự vẽ nha

Xét ΔOAD và ΔOBC có

OA=OB

góc AOD chung

OD=OC

Do đó: ΔOAD=ΔOBC

Xét ΔKAC và ΔKBD có 

\(\widehat{KAC}=\widehat{KBD}\)

AC=BD

\(\widehat{KCA}=\widehat{KDB}\)

Do đó: ΔKAC=ΔKBD

Suy ra: KC=KD

Xét ΔOKC và ΔOKD có

OK chung

KC=KD

OC=OD

Do đó ΔOKC=ΔOKD

Suy ra: \(\widehat{COK}=\widehat{DOK}\)

hay OKlà tia phân giác của góc xOy

26 tháng 12 2017

Xét tam giác ΔAHO và ΔBHO, ta có :

+ \(\widehat{O}\) là góc chung(giả thuyết)

+AH=AB(vì Ot là tia phân giác của góc xOy)

+\(\widehat{AHO}\)=\(\widehat{BHO}\)(giả thuyết)

➩ΔAHO = ΔBHO (c.g.c)(nghĩa là góc.cạnh.góc)

⚠⚠⚠Lưu ý: trường hợp này là góc.cạnh.góc (hoặc là c.g.c) nên theo yêu cầu cần 2 góc và 1 cạnh ; phải đặt đúng theo thứ tự :

Góc đầu tiên;rồi đến cạnh và cuối là góc còn lại

27 tháng 12 2017

ban lam thieu

8 tháng 5 2022

mọi người giải giúp e với🥲

 

5 tháng 10 2019

Hình bạn tự vẽ nha!

a) Vì \(Oz\) là tia phân giác của \(\widehat{xOy}\left(gt\right)\)

=> \(\widehat{xOz}=\widehat{yOz}.\)

Hay \(\widehat{AOC}=\widehat{BOC}\)

Xét 2 \(\Delta\) \(AOC\)\(BOC\) có:

\(OA=OB\left(gt\right)\)

\(\widehat{AOC}=\widehat{BOC}\left(cmt\right)\)

Cạnh OC chung

=> \(\Delta AOC=\Delta BOC\left(c-g-c\right).\)

=> \(AC=BC\) (2 cạnh tương ứng)

Chúc bạn học tốt!

5 tháng 10 2019

O B A y x C z

a) Cm: AC=BC

Xét ΔAOC và ΔBOC, ta có:

\(\begin{cases} OA=OB(gt)\\ \widehat{AOC}= \widehat{BOC}(OC là tia phân giác \widehat{xOy}\\ OC là cạnh chung \end{cases}\)

Vậy ΔAOC = ΔBOC(c-g-c)

=>AC=BC( 2 cạnh tương ứng)

b)Cm: \(\widehat{xAC}=\widehat{yBC}\)

Ta có:

\(\begin{cases} \widehat{xAC}+ \widehat{OAC}=180^o(kề bù)\\ \widehat{yBC}+ \widehat{OBC}=180^o(kề bù) \end{cases}\)

Mà:

\(\begin{cases} \widehat{OAC}= \widehat{OBC}( \Delta AOC=\Delta BOC) \end{cases}\)

Suy ra: \( \widehat{xAC}= \widehat{yBC}\)