Cho goc xOy khac goc bet. Tren tia Ox lay cac diem A,B sao cho OA<OB. Tren tia Oy lay cac diem C,D sao cho OC=OA, OD=OB.a) Chung minh rang AD=BC, b) Goi E la giao diem cua AD va BC.Chung minh rang tam giac AEB=tam giac CED
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xet tam giac AOC va BOC co
OA=OB
chung OC
AC=BC (cùng ban kinh)
tam giac AOC=AOB(c.c.c)
goc AOC=BOC
OClà tia pg của goc xOy
Hình tự vẽ nha
Xét ΔOAD và ΔOBC có
OA=OB
góc AOD chung
OD=OC
Do đó: ΔOAD=ΔOBC
Xét ΔKAC và ΔKBD có
\(\widehat{KAC}=\widehat{KBD}\)
AC=BD
\(\widehat{KCA}=\widehat{KDB}\)
Do đó: ΔKAC=ΔKBD
Suy ra: KC=KD
Xét ΔOKC và ΔOKD có
OK chung
KC=KD
OC=OD
Do đó ΔOKC=ΔOKD
Suy ra: \(\widehat{COK}=\widehat{DOK}\)
hay OKlà tia phân giác của góc xOy
Xét tam giác ΔAHO và ΔBHO, ta có :
+ \(\widehat{O}\) là góc chung(giả thuyết)
+AH=AB(vì Ot là tia phân giác của góc xOy)
+\(\widehat{AHO}\)=\(\widehat{BHO}\)(giả thuyết)
➩ΔAHO = ΔBHO (c.g.c)(nghĩa là góc.cạnh.góc)
⚠⚠⚠Lưu ý: trường hợp này là góc.cạnh.góc (hoặc là c.g.c) nên theo yêu cầu cần 2 góc và 1 cạnh ; phải đặt đúng theo thứ tự :
Góc đầu tiên;rồi đến cạnh và cuối là góc còn lại
Hình bạn tự vẽ nha!
a) Vì \(Oz\) là tia phân giác của \(\widehat{xOy}\left(gt\right)\)
=> \(\widehat{xOz}=\widehat{yOz}.\)
Hay \(\widehat{AOC}=\widehat{BOC}\)
Xét 2 \(\Delta\) \(AOC\) và \(BOC\) có:
\(OA=OB\left(gt\right)\)
\(\widehat{AOC}=\widehat{BOC}\left(cmt\right)\)
Cạnh OC chung
=> \(\Delta AOC=\Delta BOC\left(c-g-c\right).\)
=> \(AC=BC\) (2 cạnh tương ứng)
Chúc bạn học tốt!
a) Cm: AC=BC
Xét ΔAOC và ΔBOC, ta có:
\(\begin{cases} OA=OB(gt)\\ \widehat{AOC}= \widehat{BOC}(OC là tia phân giác \widehat{xOy}\\ OC là cạnh chung \end{cases}\)
Vậy ΔAOC = ΔBOC(c-g-c)
=>AC=BC( 2 cạnh tương ứng)
b)Cm: \(\widehat{xAC}=\widehat{yBC}\)
Ta có:
\(\begin{cases} \widehat{xAC}+ \widehat{OAC}=180^o(kề bù)\\ \widehat{yBC}+ \widehat{OBC}=180^o(kề bù) \end{cases}\)
Mà:
\(\begin{cases} \widehat{OAC}= \widehat{OBC}( \Delta AOC=\Delta BOC) \end{cases}\)
Suy ra: \( \widehat{xAC}= \widehat{yBC}\)