\(\dfrac{x}{y+z+1}\)=\(\dfrac{y}{x+z+1}\)=\(\dfrac{z}{x+y-2}\)=x+y+z giúp mik vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+y+z=0
nên x+y=-z; y+z=-x; x+z=-y
\(\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
\(=\dfrac{x+y}{y}\cdot\dfrac{y+z}{z}\cdot\dfrac{x+z}{x}=-1\)
\(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)(đk: \(x\ne y\ne z\))
\(=\dfrac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\dfrac{0}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)
Chắc đề là tính ha!
\(=\dfrac{x+y+y-z+x-y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ =\dfrac{0}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ =0\\ Vậy.A=0\)
a) Với \(x+y+z=0\) ta tìm được \(\left(x;y;z\right)\rightarrow\left(0;0;0\right)\)
Với \(x+y+z\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
Hay: \(x+y+z=\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}y+z=\dfrac{1}{2}-x\\x+z=\dfrac{1}{2}-y\\x+y=\dfrac{1}{2}-z\end{matrix}\right.\)
Thay vào đề bài ta được:
\(\dfrac{x}{\dfrac{1}{2}-x+1}=\dfrac{y}{\dfrac{1}{2}-y+1}=\dfrac{z}{\dfrac{1}{2}-z-2}=\dfrac{1}{2}\) Dễ dàng tìm được x;y;z
b) Theo đề bài ta có sẵn x+y+z khác 0
Áp dụng dãy tỉ số rồi làm tương tự câu a
Áp dụng t/c dtsbn:
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{x}{x+y-2}=\dfrac{x+y+z}{y+z+1+x+z+1+x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y+z+1}=\dfrac{1}{2}\left(1\right)\\\dfrac{y}{x+z+1}=\dfrac{1}{2}\left(2\right)\\x+y+z=\dfrac{1}{2}\left(3\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow2x=y+z+1\)
\(\Rightarrow2x=\dfrac{1}{2}-x+1\left(do.\left(3\right)\right)\)
\(\Rightarrow x=\dfrac{1}{2}\)
\(\left(2\right)\Rightarrow2y=x+z+1\)
\(\Rightarrow2y=\dfrac{1}{2}-y+1\left(do.\left(3\right)\right)\)
\(\Rightarrow y=\dfrac{1}{2}\)
\(\left(3\right)\Rightarrow z=\dfrac{1}{2}-x-y=\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}=-\dfrac{1}{2}\)
Vậy \(\left(x;y;z\right)\in\left\{\dfrac{1}{2};\dfrac{1}{2};-\dfrac{1}{2}\right\}\)